7 research outputs found

    P-selectin glycoprotein ligand-1 (PSGL-1) is up-regulated on leucocytes from patients with chronic obstructive pulmonary disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is characterized by a dysregulated recruitment of circulating leucocytes into the lung which is associated with the onset and progress of the disease. P-selectin glycoprotein ligand-1 (PSGL-1) is expressed on leucocytes and plays an essential role in primary leucocyte-endothelial cell adhesive contacts. The present study investigated if PSGL-1 is up-regulated on leucocytes of COPD patients. Peripheral blood samples were collected from COPD patients as well as controls (smoking, nonsmoking volunteers) and subjected to analysis of PSGL-1 expression on leucocytes, i.e. neutrophils, eosinophils, monocytes and lymphocytes by flow cytometry. No significant difference was observed between healthy nonsmoking and healthy smoking control subjects. In contrast, PSGL-1 expression was found to be significantly increased on the surface of all four leucocyte populations in COPD patients compared to both control groups. The finding that PSGL-1 surface expression is up-regulated on leucocytes of COPD patients as compared to leucocytes of controls suggests PSGL-1 as a potential target for anti-inflammatory treatment

    Serum and cerebrospinal fluid concentrations of E-selectin in patients with aneurysmal subarachnoid hemorrhage

    No full text
    The goal of the present study was to determine concentrations of E-selectin in both cerebrospinal fluid (CSF) and serum of patients with aneurysmal subarachnoid hemorrhage (SAH) and to evaluate the correlation between the clinical parameters and E-selectin levels. Both CSF and serum samples obtained from 12 patients with aneurysmal SAH and 8 patients with hydrocephalus (control group) without any other known central nervous system disease were assayed for E-selectin by quantitative enzyme-linked immunosorbent assay and the results were compared between the two groups. Mean levels of soluble forms of E-selectin within the first 3 days and on the 5th and 7th days of SAH were 4.0 ± 7.9, 2.8 ± 5.2, and 3.1 ± 4.9 ng/ml in the patient's CSF, and 33.7 ± 9.2, 35.1 ± 7.0, and 35.2 ± 8.7 ng/ml in serum, respectively. In contrast, mean E-selectin levels were 0.1 ± 0.2 ng/ml in CSF and 8.7 ± 5.0 ng/ml in serum of control patients. The difference between groups was statistically significant regarding both CSF and serum E-selectin levels (P < 0.05). Thus, we have demonstrated a marked increase of E-selectin concentration in both CSF and serum of patients with aneurysmal SAH compared with control and suggest that blocking the interaction between E-selectin and vascular endothelium may have a beneficial effect on vasospasms

    Characterizations of myosin essential light chain’s N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations

    No full text
    Cross-bridge kinetics were studied at 20 °C in cardiac muscle strips from transgenic (Tg) mice expressing N-terminal 43 amino acid truncation mutation (Δ43) of myosin essential light chain (ELC), and the results were compared to those from Tg-wild type (WT) mice. Sinusoidal length changes were applied to activated skinned papillary muscle strips to induce tension transients, from which two exponential processes were deduced to characterize the cross-bridge kinetics. Their two rate constants were studied as functions of ATP, phosphate (Pi), ADP, and Ca(2+) concentrations to characterize elementary steps of the cross-bridge cycle consisting of six states. Our results demonstrate for the first time that the cross-bridge kinetics of Δ43 are accelerated owing to an acceleration of the rate constant k(2) of the cross-bridge detachment step, and that the number of strongly attached cross-bridges are decreased because of a reduction of the equilibrium constant K(4) of the force generation step. The isometric tension and stiffness of Δ43 are diminished compared to WT, but the force per cross-bridge is not changed. Stiffness measurement during rigor induction demonstrates a reduction in the stiffness in Δ43, indicating that the N-terminal extension of ELC forms an extra linkage between the myosin cross-bridge and actin. The tension-pCa study demonstrates tht there is no Ca(2+) sensitivity change with Δ43, but the cooperativity is diminished. These results demonstrate the importance of the N-terminal extension of ELC in maintaining the myosin motor function during force generation and optimal cardiac performance

    Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations

    No full text
    We discuss here the potential mechanisms of action associated with hypertrophic (HCM) or dilated (DCM) cardiomyopathy causing mutations in the myosin regulatory (RLC) and essential (ELC) light chains. Specifically, we focus on four HCM mutations: RLC-A13T, RLC-K104E, ELC-A57G and ELC-M173V, and one DCM RLC-D94A mutation shown by population studies to cause different cardiomyopathy phenotypes in humans. Our studies indicate that RLC and ELC mutations lead to heart disease through different mechanisms with RLC mutations triggering alterations of the secondary structure of the RLC which further affect the structure and function of the lever arm domain and impose changes in the cross bridge cycling rates and myosin force generation ability. The ELC mutations exert their detrimental effects through changes in the interaction of the N-terminus of ELC with actin altering the cross talk between the thick and thin filaments and ultimately resulting in an altered force-pCa relationship. We also discuss the effect of mutations on myosin light chain phosphorylation. Exogenous myosin light chain phosphorylation and/or pseudo-phosphorylation were explored as potential rescue tools to treat hypertrophy-related cardiac phenotypes
    corecore