35 research outputs found

    Contamination of potatoes in the field and in the store by Erwinia carotovora from different sources

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D91584 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Monitoring and control of the potato brown rot bacterium (Ralstonia solanacearum) in the UK: a case study

    No full text

    Pseudomonas species associated with Agaricus bisporus Genome sequencing and assembly

    No full text
    Genetic and regional diversity of blotch-causing organisms isolated from symptomatic tissue of A. bisporus

    Molecular characterization of Pseudomonas from Agaricus bisporus caps reveal novel blotch pathogens in Western Europe

    No full text
    Background: Bacterial blotch is a group of economically important diseases affecting the cultivation of common button mushroom, Agaricus bisporus. Despite being studied for more than a century, the identity and nomenclature of blotch-causing Pseudomonas species is still unclear. This study aims to molecularly characterize the phylogenetic and phenotypic diversity of blotch pathogens in Western Europe. Methods: In this study, blotched mushrooms were sampled from farms across the Netherlands, United Kingdom and Belgium. Bacteria were isolated from symptomatic cap tissue and tested in pathogenicity assays on fresh caps and in pots. Whole genome sequences of pathogenic and non-pathogenic isolates were used to establish phylogeny via multi-locus sequence alignment (MLSA), average nucleotide identity (ANI) and in-silico DNA:DNA hybridization (DDH) analyses. Results: The known pathogens “Pseudomonas gingeri”, P. tolaasii, “P. reactans” and P. costantinii were recovered from blotched mushroom caps. Seven novel pathogens were also identified, namely, P. yamanorum, P. edaphica, P. salomonii and strains that clustered with Pseudomonas sp. NC02 in one genomic species, and three nonpseudomonads, i.e. Serratia liquefaciens, S. proteamaculans and a Pantoea sp. Insights on the pathogenicity and symptom severity of these blotch pathogens were also generated. Conclusion: A detailed overview of genetic and regional diversity and the virulence of blotch pathogens in Western Europe, was obtained via the phylogenetic and phenotypic analyses. This information has implications in the study of symptomatic disease expression, development of diagnostic tools and design of localized strategies for disease management

    Six Multiplex TaqManTM-qPCR Assays for Quantitative Diagnostics of Pseudomonas Species Causative of Bacterial Blotch Diseases of Mushrooms

    No full text
    Bacterial blotch is a group of economically important diseases of the common button mushroom (Agaricus bisporus). Once the pathogens are introduced to a farm, mesophilic growing conditions (that are optimum for mushroom production) result in severe and widespread secondary infections. Efficient, timely and quantitative detection of the pathogens is hence critical for the design of localized control strategies and prediction of disease risk. This study describes the development of real-time TaqManTM assays that allow molecular diagnosis of three currently prevalent bacterial blotch pathogens: “Pseudomonas gingeri,” Pseudomonas tolaasii and (as yet uncharacterized) Pseudomonas strains (belonging to Pseudomonas salomonii and Pseudomonas edaphica). For each pathogen, assays targeting specific DNA markers on two different loci, were developed for primary detection and secondary verification. All six developed assays showed high diagnostic specificity and sensitivity when tested against a panel of 63 Pseudomonas strains and 40 other plant pathogenic bacteria. The assays demonstrated good analytical performance indicated by linearity across calibration curve (>0.95), amplification efficiency (>90%) and magnitude of amplification signal (>2.1). The limits of detection were optimized for efficient quantification in bacterial cultures, symptomatic tissue, infected casing soil and water samples from mushroom farms. Each target assay was multiplexed with two additional assays. Xanthomonas campestris was detected as an extraction control, to account for loss of DNA during sample processing. And the total Pseudomonas population was detected, to quantify the proportion of pathogenic to beneficial Pseudomonas in the soil. This ratio is speculated to be an indicator for blotch outbreaks. The multiplexed assays were successfully validated and applied by routine testing of diseased mushrooms, peat sources, casing soils, and water from commercial production units

    Pseudomonas species associated with Agaricus bisporus Genome sequencing and assembly

    No full text
    Genetic and regional diversity of blotch-causing organisms isolated from symptomatic tissue of A. bisporus

    Dickeya species: an emerging problem for potato production in Europe

    No full text
    Dickeya species (formerly Erwinia chrysanthemi) cause diseases on numerous crop and ornamental plants world-wide. Dickeya spp. (probably D. dianthicola) were first reported on potato in the Netherlands in the 1970s and have since been detected in many other European countries. However, since 2004–5 a new pathogen, with the proposed name ‘D. solani’, has been spreading across Europe via trade in seed tubers and is causing increasing economic losses. Although disease symptoms are often indistinguishable from those of the more established blackleg pathogen Pectobacterium spp., Dickeya spp. can initiate disease from lower inoculum levels, have a greater ability to spread through the plant’s vascular tissue, are considerably more aggressive, and have higher optimal temperatures for disease development (the latter potentially leading to increased disease problems as Europe’s climate warms). However, they also appear to be less hardy than Pectobacterium spp. in soil and other environments outside the plant. Scotland is currently the only country in Europe to enforce zero tolerance for Dickeya spp. in its potato crop in an attempt to keep its seed tuber industry free from disease. However, there are a number of other ways to control the disease, including seed tuber certification, on-farm methods and the use of diagnostics. For diagnostics, new genomics-based approaches are now being employed to develop D. dianthicola- and ‘D. solani’-specific PCR-based tests for rapid detection and identification. It is hoped that these diagnostics, together with other aspects of ongoing research, will provide invaluable tools and information for controlling this serious threat to potato productio
    corecore