145 research outputs found

    Lp-PLA2 activity is associated with increased risk of diabetic retinopathy:a longitudinal disease progression study

    Get PDF
    Aims/hypothesis: The aim of the study was to examine the association between lipoprotein-associated phospholipase A2 (Lp-PLA2) activity levels and incident diabetic retinopathy and change in retinopathy grade.Methods: This was a cohort study of diabetic participants with serum collected at baseline and routinely collected diabetic retinal screening data. Participants with type 2 diabetes from the GoDARTS (Genetics of Diabetes Audit and Research in Tayside Scotland) cohort were used. This cohort is composed of individuals of white Scottish ancestry from the Tayside region of Scotland. Survival analysis accounting for informative censoring by modelling death as a competing risk was performed for the development of incident diabetic retinopathy from a disease-free state in a 3 year follow-up period (n = 1364) by stratified LpPLA2 activity levels (in quartiles). The same analysis was performed for transitions to more severe grades.Results: The hazard of developing incident diabetic retinopathy was 2.08 times higher (95% CI 1.64, 2.63) for the highest quartile of Lp-PLA2 activity compared with the lowest. Higher Lp-PLA2 activity levels were associated with a significantly increased risk for transitions to all grades. The hazards of developing observable (or more severe) and referable (or more severe) retinopathy were 2.82 (95% CI 1.71, 4.65) and 1.87 (95% CI 1.26, 2.77) times higher for the highest quartile of Lp-PLA2 activity compared with the lowest, respectively.Conclusions/interpretation: Higher Lp-PLA2 levels are associated with increased risk of death and the development of incident diabetic retinopathy, as well as transitions to more severe grades of diabetic retinopathy. These associations are independent of calculated LDL-cholesterol and other traditional risk factors. Further, this biomarker study shows that the association is temporally sensitive to the proximity of the event to measurement of Lp-PLA2

    Genetic and Regulatory Mechanisms of Comorbidity of Anxiety, Depression and ADHD: A GWAS Meta-Meta-Analysis Through the Lens of a System Biological and Pharmacogenomic Perspective in 18.5 M Subjects.

    Get PDF
    Background: In the United States, approximately 1 in 5 children experience comorbidities with mental illness, including depression and anxiety, which lead to poor general health outcomes. Adolescents with substance use disorders exhibit high rates of co-occurring mental illness, with over 60% meeting diagnostic criteria for another psychiatric condition in community-based treatment programs. Comorbidities are influenced by both genetic (DNA antecedents) and environmental (epigenetic) factors. Given the significant impact of psychiatric comorbidities on individuals lives, this study aims to uncover common mechanisms through a Genome-Wide Association Study (GWAS) meta-meta-analysis. Methods: GWAS datasets were obtained for each comorbid phenotype, followed by a GWAS meta-meta-analysis using a significance threshold of p < 5E-8 to validate the rationale behind combining all GWAS phenotypes. The combined and refined dataset was subjected to bioinformatic analyses, including Protein-Protein Interactions and Systems Biology. Pharmacogenomics (PGx) annotations for all potential genes with at least one PGx were tested, and the genes identified were combined with the Genetic Addiction Risk Severity (GARS) test, which included 10 genes and eleven Single Nucleotide Polymorphisms (SNPs). The STRING-MODEL was employed to discover novel networks and Protein-Drug interactions. Results: Autism Spectrum Disorder (ASD) was identified as the top manifestation derived from the known comorbid interaction of anxiety, depression, and attention deficit hyperactivity disorder (ADHD). The STRING-MODEL and Protein-Drug interaction analysis revealed a novel network associated with these psychiatric comorbidities. The findings suggest that these interactions are linked to the need to induce dopamine homeostasis as a therapeutic outcome. Conclusions: This study provides a reliable genetic and epigenetic map that could assist healthcare professionals in the therapeutic care of patients presenting with multiple psychiatric manifestations, including anxiety, depression, and ADHD. The results highlight the importance of targeting dopamine homeostasis in managing ASD linked to these comorbidities. These insights may guide future pharmacogenomic interventions to improve clinical outcomes in affected individuals

    A guide for social science journal editors on easing into open science

    Get PDF
    Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors: www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide: https://doi.org/10.31219/osf.io/hstcx)

    A Guide for Social Science Journal Editors on Easing into Open Science

    Get PDF
    Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors: www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide: https://osf.io/hstcx).<br/

    A guide for social science journal editors on easing into open science

    Get PDF
    Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors: www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide: https://osf.io/hstcx)

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    A guide for social science journal editors on easing into open science

    Get PDF
    Journal editors have a large amount of power to advance open science in their respective fields by incentivising and mandating open policies and practices at their journals. The Data PASS Journal Editors Discussion Interface (JEDI, an online community for social science journal editors: www.dpjedi.org) has collated several resources on embedding open science in journal editing (www.dpjedi.org/resources). However, it can be overwhelming as an editor new to open science practices to know where to start. For this reason, we created a guide for journal editors on how to get started with open science. The guide outlines steps that editors can take to implement open policies and practices within their journal, and goes through the what, why, how, and worries of each policy and practice. This manuscript introduces and summarizes the guide (full guide: https://doi.org/10.31219/osf.io/hstcx).This article is published as Silverstein, P., Elman, C., Montoya, A. et al. A guide for social science journal editors on easing into open science. Res Integr Peer Rev 9, 2 (2024). https://doi.org/10.1186/s41073-023-00141-5. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data

    From Democratic Peace to Democratic Distinctiveness: A Critique of Democratic Exceptionalism in Peace and Conflict Studies

    Full text link
    corecore