88 research outputs found

    Genetic and Environmental Causes of Variation in Trait Resilience in Young People

    Get PDF
    The aim of this multi-informant twin study was to determine the relative role of genetic and environmental factors in explaining variation in trait resilience in adolescents. Participants were consenting families (N = 2,638 twins in 1,394 families), from seven national cohorts (age 12–18 years, both sexes) of monozygotic and dizygotic twins reared together. Questionnaire data on the adolescents’ Ego-resilience (ER89) was collected from mothers, fathers and twins, and analysed by means of multivariate genetic modelling. Variance in trait resilience was best represented in an ADE common pathways model with sex limitation. Variance in the latent psychometric resilience factor was largely explained by additive genetic factors (77% in boys, 70% in girls), with the remaining variance (23 and 30%) attributable to non-shared environmental factors. Additive genetic sources explained more than 50% of the informant specific variation in mothers and fathers scores. In twins, additive and non-additive genetic factors together explained 40% and non-shared environmental factor the remaining 60% of variation. In the mothers’ scores, the additive genetic effect was larger for boys than for girls. The non-additive genetic factor found in the twins’ self ratings was larger in boys than in girls. The remaining sex differences in the specific factors were small. Trait resilience is largely genetically determined. Estimates based on several informants rather than single informants approaches are recommended

    Speaker- versus listener-oriented disfluency: A re-examination of arguments and assumptions from autism spectrum disorder

    Get PDF
    We re-evaluate conclusions about disfluency production in high-functioning forms of autism spectrum disorder (HFA). Previous studies examined individuals with HFA to address a theoretical question regarding speaker- and listener-oriented disfluencies. Individuals with HFA tend to be self-centric and have poor pragmatic language skills, and should be less likely to produce listener-oriented disfluency. However, previous studies did not account for individual differences variables that affect disfluency. We show that both matched and unmatched controls produce fewer repairs than individuals with HFA. For silent pauses, there was no difference between matched controls and HFA, but both groups produced more than unmatched controls. These results identify limitations in prior research and shed light on the relationship between autism spectrum disorders and disfluent speech

    The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects

    Get PDF
    We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes

    Get PDF
    While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID–associated phenotypes compared to autism (p = 9.58×10−11, odds ratio = 4.59), dyslexia (p = 3.81×10−18, odds ratio = 14.45), or controls (p = 2.75×10−17, odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4×10−6, odds ratio = 6) or ID (16%, p = 3.55×10−12, odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33)

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention

    Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection

    Get PDF
    Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii
    corecore