3,225 research outputs found
Quasi Optimal Gait of a Biped Robot with a Rolling Knee Kinematic
In this paper, we address the problem of optimization of trajectories for a new class of biped robot. The knees of this biped are similar as the anthropomorphic one and have a rolling contact between the femur and the tibia. The robot has seven mechanical links and six actuators. The walking gait considered is a succession of single support phase (SSP) and impact of the mobile foot with the ground. Cubic uniform spline functions defined on a time interval express the gait for one step. An energy consumption function and a torques quadratic function are used to compare the new robot with anthropomorphic knees to a conventional robot with revolute joint knees. The minimization of the criteria is made with simplex algorithm. The physical constraints concerning the ZMP and the mobile foot behavior are respectively checked to make a step. Simulation results show that the energy consumption of the new biped with rolling knee contact is less than that of the robot with revolute joint knees.ANR R2A
Quasi optimal sagittal gait of a biped robot with a new structure of knee joint
The design of humanoid robots has been a tricky challenge for several years. Due to the kinematic complexity of human joints, their movements are notoriously difficult to be reproduced by a mechanism. The human knees allow movements including rolling and sliding, and therefore the design of new bioinspired knees is of utmost importance for the reproduction of anthropomorphic walking in the sagittal plane. In this article, the kinematic characteristics of knees were analyzed and a mechanical solution for reproducing them is proposed. The geometrical, kinematic and dynamic models are built together with an impact model for a biped robot with the new knee kinematic. The walking gait is studied as a problem of parametric optimization under constraints. The trajectories of walking are approximated by mathematical functions for a gait composed of single support phases with impacts. Energy criteria allow comparing the robot provided with the new rolling knee mechanism and a robot equipped with revolute knee joints. The results of the optimizations show that the rolling knee brings a decrease of the sthenic criterion. The comparisons of torques are also observed to show the difference of energy distribution between the actuators. For the same actuator selection, these results prove that the robot with rolling knees can walk longer than the robot with revolute joint knees.ANR R2A
Influence of frictions on gait optimization of a biped robot with an anthropomorphic knee
This paper presents the energy consumption of a biped robot with a new modelled structure of knees which is called rolling knee (RK). The dynamic model, the actuators and the friction coefficients of the gear box are known. The optimal energy consumption can also be calculated. The first part of the paper is to validate the new kinematic knee on a biped robot by comparing the energy consumption during a walking step of the identical biped but with revolute joint knees. The cyclic gait is given by a succession of Single Support Phase (SSP) followed by an impact. The gait trajectories are parameterized by cubic spline functions. The energetic criterion is minimized through optimization while using the simplex algorithm and Lagrange penalty functions to meet the constraints of stability and deflection of the mobile foot. An analysis of the friction coefficients is done by simulation to compare the human characteristics to the robot with RK. The simulation results show an energy consumption reduction through the biped with rolling knee configuration. The influence of friction coefficients shows the energy consumption of biped robot is close to that of the human.ANR-09-SEGI-011-R2A2; French National Research Agenc
Stochastic surgery selection and sequencing under dynamic emergency break-ins
Anticipating the impact of urgent emergency arrivals on operating room schedules remains methodologically and computationally challenging. This paper investigates a model for surgery scheduling, in which both surgery durations and emergency patient arrivals are stochastic. When an emergency patient arrives he enters the first available room. Given the sets of surgeries available to each operating room for that day, as well as the distributions of the main stochastic variables, we aim to find the per-room surgery sequences that minimise a joint objective, which includes over- and under-utilisation, the amount of cancelled patients, as well as the risk that emergencies suffer an excessively long waiting time. We show that a detailed analysis of emergency break-ins and their disruption of the schedule leads to a lower total cost compared to less sophisticated models. We also map the trade-off between the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient heuristic is proposed to accurately estimate the value of a solution with significantly less computational effort
Preparation and characterization of electrolytic alumina deposit on austenitic stainless steel
Conversion coating modified by alumina has been studied as a way for improving the resistance to thermal oxidation of an austenitic stainless steel. Conversion coating, characterized by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. The influence of the current density and treatment time on alumina deposit was studied using statistical experimental designs like Doehlert uniform shell design. After heating, coatings present a continuous composition gradient with refractory compounds at the surface. The behavior at high temperature (1000 8C) of the alumina coating was investigated. The presence of alumina increases the oxidation resistance of an austenitic stainless steel at 1000 8C. The morphology and the chemical composition of the deposit are analyzed. Results on the thermal stability of coating on austenitic stainless steel are presented
- …
