7 research outputs found

    Equine placentitis is associated with a downregulation in myometrial progestin signaling

    No full text
    The current study aimed to elucidate the mechanisms underlying myometrial activation during equine placentitis related to progestogens and the progesterone receptor signaling pathways. Placentitis was induced via intracervical inoculation with Streptococcus equi ssp zooepidemicus in mares at approximately 290 days of gestation (placentitis group; n = 6) with uninoculated gestationally matched mares as controls (n = 4). Mares in the placentitis and control groups were euthanized, and myometrial samples were collected from two regions: region 1-parallel to active placentitis lesion with placental separation in placentitis group (P1) or caudal pole of the placenta in control group (C1); and region 2-parallel to apparently normal placenta without separation in placentitis group (P2) or uterine body in control group (C2). In the current study, SRD5A1 and AKR1C23, which encode for the key P4 metabolizing enzymes, were downregulated in P1 in comparison to C1, C2, and P2, and this was associated with a decline (P < 0.05) in 5 alpha DHP, allopregnanolone (3 alpha DHP), and 20 alpha DHP in P1 in comparison to C1. Further, myometrial expression of PR was downregulated (P < 0.05) in P1 in comparison to C1 and P2, and this was associated with activation of the inflammatory cascade as reflected by significant upregulation of IL-1 beta and IL-8 in P1 in comparison to C1, C2, and P2, and supported by increased tissue leukocytes in P1 in comparison to C1. In conclusion, equine placentitis is associated with a localized withdrawal of progestins and a downregulation of the PR in the myometrium concomitant with upregulation of inflammatory cytokines and subsequent myometrial activation

    Steroid synthesis and metabolism in the equine placenta during placentitis

    No full text
    Equine placentitis is associated with alterations in maternal peripheral steroid concentrations, which could negatively affect pregnancy outcome. This study aimed to elucidate the molecular mechanisms related to steroidogenesis and steroid-receptor signaling in the equine placenta during acute placentitis. Chorioallantois (CA) and endometrial (EN) samples were collected from mares with experimentally induced placentitis (n = 4) and un-inoculated gestationally age-matched mares (control group; n = 4). The mRNA expression of genes coding for steroidogenic enzymes (3 beta HSD, CYP11A1, CYP17A1, CYP19A1, SRD5A1, and AKR1C23) was evaluated using qRT-PCR. The concentration of these enzyme-dependent steroids (P-5, P-4, 5 alpha DHP, 3 alpha DHP, 20 alpha DHP, 3 beta-20 alpha DHP, 17OH-P, DHEA, A(4), and estrone) was assessed using liquid chromatography-tandem mass spectrometry in both maternal circulation and placental tissue. Both SRD5A1 and AKR1C23, which encode for the key progesterone metabolizing enzymes, were downregulated (P < 0.05) in CA from the placentitis group compared to controls, and this downregulation was associated with a decline in tissue concentrations of 5 alpha DHP (P < 0.05), 3 alpha DHP (P < 0.05), and 3 beta-20 alpha DHP (P = 0.052). In the EN, AKR1C23 was also downregulated in the placentitis group compared to controls, and this downregulation was associated with a decline in EN concentrations of 3 alpha DHP (P < 0.01) and 20 alpha DHP (P < 0.05). Moreover, CA expression of CYP19A1 tended to be lower in the placentitis group, and this reduction was associated with lower (P = 0.057) concentrations of estrone in CA. Moreover, ESR1 (steroid receptors) gene expression was downregulated (P = 0.057) in CA from placentitis mares. In conclusion, acute equine placentitis is associated with a local withdrawal of progestins in the placenta and tended to be accompanied with estrogen withdrawals in CA
    corecore