73 research outputs found

    The Toxic Effects of Cigarette Additives. Philip Morris' Project Mix Reconsidered: An Analysis of Documents Released through Litigation

    Get PDF
    Stanton Glantz and colleagues analyzed previously secret tobacco industry documents and peer-reviewed published results of Philip Morris' Project MIX about research on cigarette additives, and show that this research on the use of cigarette additives cannot be taken at face value

    The South, the suburbs, and the Vatican too: explaining partisan change among Catholics

    Get PDF
    This paper explains changes in partisanship among Catholics in the last quarter of the 20th Century using a theory of partisan change centered on the contexts in which Catholics lived. Catholics were part of the post-New Deal Democratic coalition, but they have become a swing demographic group. We argue that these changes in partisanship are best explained by changes in elite messages that are filtered through an individual’s social network. Those Catholics who lived or moved into the increasingly Republican suburbs and South were the Catholics who were most likely to adopt a non-Democratic partisan identity. Changes in context better explain Catholic partisanship than party abortion policy post Roe v. Wade or ideological sorting. We demonstrate evidence in support of our argument using the ANES cumulative file from 1972 through 2000

    Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion<sup>®</sup>CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke.</p> <p>Results</p> <p>Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and <sup>15</sup>N NMR. Diaion<sup>®</sup>CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion<sup>®</sup>CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion<sup>®</sup>CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics.</p> <p>Conclusions</p> <p>This study has shown that Diaion<sup>®</sup>CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.</p

    Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies

    Get PDF
    Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking

    Game feature and expertise effects on experienced richness, control and engagement in game play

    Full text link
    The extent to which game play is experienced as engaging is an important criterion for the playability of video games. This study investigates how video games can be designed towards increased levels of experienced engagement over time. For this purpose, two experiments were conducted in which a total of 35 participants repeatedly played a video game. Results indicate that experienced engagement is based on the extent to which the game provides rich experiences as well as by the extent to which the game provides a sense of control. In view of the influence of both game features and players’ expertise on the levels of experienced richness and control, it is concluded that game features should be modified over time to maintain optimal levels of engagement

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
    corecore