139 research outputs found

    Circadian clock mechanism driving mammalian photoperiodism.

    Get PDF
    The annual photoperiod cycle provides the critical environmental cue synchronizing rhythms of life in seasonal habitats. In 1936, Bünning proposed a circadian-basis for photoperiodic synchronization. Here, light-dark cycles entrain a circadian rhythm of photosensitivity, and the expression of summer or winter biology depends on whether light coincides with the phase of high photosensitivity. Formal studies support the universality of this so-called coincidence timer, but we lack understanding of the mechanisms involved. Here we show in mammals that coincidence timing takes place in the pars tuberalis of the pituitary, through a melatonin-dependent flip-flop switch between circadian transcriptional activation and repression. Long photoperiods produce short night-time melatonin signals, leading to induction of the circadian transcription factor BMAL2, in turn triggering summer biology through the eyes absent / thyrotrophin (EYA3 / TSH) pathway. Conversely, short photoperiods produce long melatonin signals, inducing circadian repressors including DEC1, in turn suppressing BMAL2 and the EYA3/TSH pathway, triggering winter biology. These actions are associated with progressive genome-wide changes in chromatin state, elaborating the effect of the circadian coincidence timer. Hence, circadian clock interactions with pituitary epigenetic pathways form the basis of the mammalian coincidence timer mechanism. Our results constitute a blueprint for circadian-based seasonal timekeeping in vertebrates

    Radiations and male fertility

    Get PDF
    During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality

    Period gene expression in mouse endocrine tissues

    Get PDF
    Circadian rhythms are generated by the oscillating expression of the Per1 and Per2 genes, which are expressed not only in the central brain pacemaker but also in peripheral tissues. Hormones are likely to coordinate physiological function in time. We performed in situ hybridization to localize mPer1 and mPer2 mRNA to particular cell types and tissue compartments in adrenal, thyroid, and testis. BALB/c mice maintained in a 12:12-h light-dark cycle expressed mPer1 in adrenal medulla, particularly in late afternoon and early night. mPer2 mRNA was more intensely expressed in adrenal cortex, especially in afternoon and evening. mPer1 mRNA was detected in thyroid. mPer1 was found in some but not all seminiferous tubules of each mouse at all times of day. Quantitation in C57BL/6 mice revealed a significant increase in the number of heavily labeled seminiferous tubules early in the night. Consistent with in situ hybridization, immunocytochemistry showed PER1 protein in spermatocytes and spermatids (spermatogenic stages VII-XII). Staining in spermatogonia and interstitial cells was inconsistent. Double labeling with 5′-bromodeoxyuridine showed PER1 expression first occurring 5 days after DNA replication. We conclude that mPeriod genes are expressed in peripheral endocrine glands. Central regulation, adenohypophyseal control, and functional importance of expression and phase remain to be elucidated. </jats:p
    • …
    corecore