59 research outputs found
Single-base substitutions in the CHM promoter as a cause of choroideremia
Although over 150 unique mutations affecting the coding sequence of CHM have been identified in patients with the X-linked chorioretinal disease choroideremia (CHM), no regulatory mutations have been reported, and indeed the promoter has not been defined. Here, we describe two independent families affected by CHM bearing a mutation outside the gene's coding region at position c.-98: C>A and C>T, which segregated with the disease. The male proband of family 1 was found to lack CHM mRNA and its gene product Rab escort protein 1, whereas whole-genome sequencing of an affected male in family 2 excluded the involvement of any other known retinal genes. Both mutations abrogated luciferase activity when inserted into a reporter construct, and by further employing the luciferase reporter system to assay sequences 5′ to the gene, we identified the CHM promoter as the region encompassing nucleotides c.-119 to c.-76. These findings suggest that the CHM promoter region should be examined in patients with CHM who lack coding sequence mutations, and reveals, for the first time, features of the gene's regulation
Recommended from our members
A Novel Mutation in the OFD1 Gene in a Family with Oral-Facial-Digital Syndrome Type 1: A Case Report.
Oral-facial-digital syndrome as heterogeneous developmental conditions is characterized by abnormalities in the oral cavity, facial features and digits. Furthermore, central nervous system (CNS) abnormalities can also be part of this developmental disorder. At least 13 forms of OFDS based on their pattern of signs and symptoms have been identified so far. Type 1 which is now considered to be a ciliopathy accounts for the majority of cases. It is transmitted in an X-linked dominant pattern and caused by mutations in OFD1 gene, which can result in embryonic male lethality. In this study, we present a family suffering from orofaciodigital syndrome type I who referred to Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences in 2015. Two female siblings and their mother shared a novel 2-base pair deletion (c.1964-1965delGA) in exon 16 of OFD1 gene. Clinically, the sibling had oral, facial and brain abnormalities, whereas their mother is very mildly affected. She also had history of recurrent miscarriage of male fetus
Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy
Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway–modulating therapeutics
A Novel Mutation in the OFD1 Gene in a Family with Oral-Facial-Digital Syndrome Type 1: A Case Report
This is the final version. Available on open access from Tehran University of Medical Sciences via the link in this recordOral-facial-digital syndrome as heterogeneous developmental conditions is characterized by abnormalities in the oral cavity, facial features and digits. Furthermore, central nervous system (CNS) abnormalities can also be part of this developmental disorder. At least 13 forms of OFDS based on their pattern of signs and symptoms have been identified so far. Type 1 which is now considered to be a ciliopathy accounts for the majority of cases. It is transmitted in an X-linked dominant pattern and caused by mutations in OFD1 gene, which can result in embryonic male lethality. In this study, we present a family suffering from orofaciodigital syndrome type I who referred to Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences in 2015. Two female siblings and their mother shared a novel 2-base pair deletion (c.1964-1965delGA) in exon 16 of OFD1 gene. Clinically, the sibling had oral, facial and brain abnormalities, whereas their mother is very mildly affected. She also had history of recurrent miscarriage of male fetus
‘Something that helped the whole picture’: Experiences of parents offered rapid prenatal exome sequencing in routine clinical care in the English National Health Service
Objectives: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England. This study aimed to explore parent experiences and their information and support needs from the perspective of parents offered pES and of health professionals involved in its delivery. Methods: In this qualitative study, semi-structured interviews were conducted with 42 women and 6 male partners and 63 fetal medicine and genetic health professionals. Interviews were transcribed verbatim and analysed using thematic analysis. Results: Overall views about pES were positive and parents were grateful to be offered the test. Highlighted benefits of pES included the value of the additional information for pregnancy management and planning for future pregnancies. An anxious wait for results was common, often associated with the need to make decisions near to 24Â weeks in pregnancy when there are legal restrictions for late termination. Descriptions of dealing with uncertainty were also common, even when results had been returned. Many parents described pES results as informing decision-making around whether or not to terminate pregnancy. Some professionals were concerned that a non-informative result could be overly reassuring and highlighted that careful counselling was needed to ensure parents have a good understanding of what the result means for their pregnancy. Emotional support from professionals was valued; however, some parents felt that post-test support was lacking. Conclusion: Parents and professionals welcomed the introduction of pES. Results inform parents' decision-making around the termination of pregnancy. When there are no diagnostic findings or uncertain findings from pES, personalised counselling that considers scans and other tests are crucial. Directing parents to reliable online sources of information and providing emotional support throughout could improve their experiences of care
Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging.
Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders
Delivery of a national prenatal exome sequencing service in England: a mixed methods study exploring healthcare professionals’ views and experiences
Copyright \ua9 2024 Peter, Mellis, McInnes-Dean, Daniel, Walton, Fisher, Leeson-Beevers, Allen, Baple, Beleza-Meireles, Bertoli, Campbell, Canham, Cilliers, Cobben, Eason, Harrison, Holder-Espinasse, Male, Mansour, McEwan, Park, Smith, Stewart, Tapon, Vasudevan, Williams, Wu, Chitty and Hill.Introduction: In October 2020, rapid prenatal exome sequencing (pES) was introduced into routine National Health Service (NHS) care in England, requiring the coordination of care from specialist genetics, fetal medicine (FM) and laboratory services. This mixed methods study explored the experiences of professionals involved in delivering the pES service during the first 2 years of its delivery in the NHS. Methods: A survey (n = 159) and semi-structured interviews (n = 63) with healthcare professionals, including clinical geneticists, FM specialists, and clinical scientists (interviews only) were used to address: 1) Views on the pES service; 2) Capacity and resources involved in offering pES; 3) Awareness, knowledge, and educational needs; and 4) Ambitions and goals for the future. Results: Overall, professionals were positive about the pES service with 77% rating it as Good or Excellent. A number of benefits were reported, including the increased opportunity for receiving actionable results for parental decision-making, improving equity of access to genomic tests and fostering close relationships between FM and genetics departments. Nonetheless, there was evidence that the shift to offering pES in a clinical setting had brought some challenges, such as additional clinic time, administrative processes, perceived lack of autonomy in decision-making regarding pES eligibility and difficulty engaging with peripheral maternity units. Concerns were also raised about the lack of confidence and gaps in genomics knowledge amongst non-genetics professionals - especially midwives. However, the findings also highlighted value in both FM, obstetric and genetics professionals benefiting from further training with a focus on recognising and managing prenatally diagnosed genetic conditions. Conclusion: Healthcare professionals are enthusiastic about the benefits of pES, and through multi-collaborative working, have developed relationships that have contributed to effective communication across specialisms. Although limitations on resources and variation in knowledge about pES have impacted service delivery, professionals were hopeful that improvements to infrastructure and the upskilling of all professionals involved in the pathway would optimise the benefits of pES for both parents and professionals
Mutations in KPTN Cause Macrocephaly, Neurodevelopmental Delay, and Seizures
The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis
- …