18 research outputs found

    Adult case of partial trisomy 9q

    Get PDF
    Background: \ud Complete and partial trisomy 9 is the fourth most common chromosomal disorder. It is also associated with various congenital characteristics affecting the cranio-facial, skeletal, central nervous, gastrointestinal, cardiac and renal systems. Very few cases have been reported in adults. Partial trisomy 9q is also associated with short stature, poor growth and growth hormone deficiency. This is the first reported case of an extensive endocrinology investigation of short stature in trisomy 9q and the outcome of growth hormone treatment.\ud \ud Case Presentation: \ud The case involves a 23-year-old female of pure partial trisomy 9q. The case involves a 23-year old female with pure partial trisomy 9q involving a duplication of 9q22.1 to q32, de novo, confirmed by genetic studies using fluorescene in situ hybridization (FISH) method. The diagnosis was at 6 years of age. She did not demonstrate all the congenital morphologies identified with trisomy 9q disorders especially in relation to multi-organ morphologies. There is also a degree of associated intellectual impairment. At prepuberty, she was referred for poor growth and was diagnosed with partial growth hormone deficiency. She responded very well to treatment with growth hormone and is currently living an independent life with some support.\ud \ud Conclusions: \ud Trisomy 9q is associated with short stature and failure to thrive. Growth hormone deficiency should be identified in cases of trisomy 9q and treatment offered. This is the first reported case of response to growth hormone replacement in partial trisomy 9

    Analysis of mutations within the intron20 splice donor site of CREBBP in patients with and without classical RSTS

    No full text
    Whole-exome sequencing of a patient with intellectual disability and without recognisable phenotype yielded a mutation in the intron20 splice donor site of CREBBP. Mutations at different positions within the same intron20 splice donor site were observed in three patients clinically suspected as having Rubinstein-Taybi syndrome (RSTS). All mutations were de novo and likely disease-causing. To investigate a putative difference in splicing between the patient without RSTS phenotype and the three patients with the RSTS phenotype, we analysed the effects of these mutations on splicing of the pre-mRNA of CREBBP. As no RNA of patients was available, we generated a new and improved exon-trap vector, pCDNAGHE, and tested the effect of the various mutations on splicing in vitro. All mutations lead to skipping of exon20. In one of the patients with an RSTS phenotype, there was also some normal splicing detectable. We conclude that the splicing pattern obtained by exon-trapping cannot explain the difference in phenotype between the patient without the RSTS phenotype and the patients with clinical RSTS. Patient or tissue-specific splice effects as well as modifying genes likely will explain the difference in phenotyp
    corecore