4 research outputs found

    Transforming growth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM.

    No full text
    Recent studies indicate that a subset of cancer cells possessing stem cell properties, referred to as cancer-initiating or cancer stem cells (CSCs), have crucial roles in tumor initiation, metastasis and resistance to anticancer therapies. Transforming growth factor (TGF)-β and their family members have been implicated in both normal (embryonic and somatic) stem cells and CSCs. In this study, we observed that exposure to TGF-β increased the population of breast cancer (BC) cells that can form mammospheres in suspension, a feature endowed by stem cells. This was mediated by the micro (mi)RNA family miR-181, which was upregulated by TGF-β at the post-transcriptional level. Levels of the miR-181 family members were elevated in mammospheres grown in undifferentiating conditions, compared with cells grown in two-dimensional conditions. Ataxia telangiectasia mutated (ATM), a target gene of miR-181, exhibited reduced expression in mammospheres and upon TGF-β treatment. Overexpression of miR-181a/b, or depletion of ATM or its substrate CHK2, was sufficient to induce sphere formation in BC cells. Finally, knockdown of ATM enhanced in vivo tumorigenesis of the MDA361 BC cells. Our results elucidate a novel mechanism through which the TGF-β pathway regulates the CSC property by interfering with the tumor suppressor ATM, providing insights into the cellular and environmental factors regulating CSCs, which may guide future studies on therapeutic strategies targeting these cells

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    No full text
    Abstract Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with the Fluka Monte Carlo programme.</jats:p
    corecore