8 research outputs found

    Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion

    Get PDF
    The signal transducer and activator of transcription 3 (STAT3) contributes to cardioprotection by ischemic pre- and postconditioning. Mitochondria are central elements of cardioprotective signaling, most likely by delaying mitochondrial permeability transition pore (MPTP) opening, and STAT3 has recently been identified in mitochondria. We now characterized the mitochondrial localization of STAT3 and its impact on respiration and MPTP opening. STAT3 was mainly present in the matrix of subsarcolemmal and interfibrillar cardiomyocyte mitochondria. STAT1, but not STAT5 was also detected in mitochondria under physiological conditions. ADP-stimulated respiration was reduced in mitochondria from mice with a cardiomyocyte-specific deletion of STAT3 (STAT3-KO) versus wildtypes and in rat mitochondria treated with the STAT3 inhibitor Stattic (STAT3 inhibitory compound, 6-Nitrobenzo[b]thiophene 1,1-dioxide). Mitochondria from STAT3-KO mice and Stattic-treated rat mitochondria tolerated less calcium until MPTP opening occurred. STAT3 co-immunoprecipitated with cyclophilin D, the target of the cardioprotective agent and MPTP inhibitor cyclosporine A (CsA). However, CsA reduced infarct size to a similar extent in wildtype and STAT3-KO mice in vivo. Thus, STAT3 possibly contributes to cardioprotection by stimulation of respiration and inhibition of MPTP opening

    Transcriptomic alterations in the heart of non-obese type 2 diabetic Goto-Kakizaki rats

    Get PDF
    BACKGROUND: There is a spectacular rise in the global prevalence of type 2 diabetes mellitus (T2DM) due to the worldwide obesity epidemic. However, a significant proportion of T2DM patients are non-obese and they also have an increased risk of cardiovascular diseases. As the Goto-Kakizaki (GK) rat is a well-known model of non-obese T2DM, the goal of this study was to investigate the effect of non-obese T2DM on cardiac alterations of the transcriptome in GK rats. METHODS: Fasting blood glucose, serum insulin and cholesterol levels were measured at 7, 11, and 15 weeks of age in male GK and control rats. Oral glucose tolerance test and pancreatic insulin level measurements were performed at 11 weeks of age. At week 15, total RNA was isolated from the myocardium and assayed by rat oligonucleotide microarray for 41,012 genes, and then expression of selected genes was confirmed by qRT-PCR. Gene ontology and protein-protein network analyses were performed to demonstrate potentially characteristic gene alterations and key genes in non-obese T2DM. RESULTS: Fasting blood glucose, serum insulin and cholesterol levels were significantly increased, glucose tolerance and insulin sensitivity were significantly impaired in GK rats as compared to controls. In hearts of GK rats, 204 genes showed significant up-regulation and 303 genes showed down-regulation as compared to controls according to microarray analysis. Genes with significantly altered expression in the heart due to non-obese T2DM includes functional clusters of metabolism (e.g. Cyp2e1, Akr1b10), signal transduction (e.g. Dpp4, Stat3), receptors and ion channels (e.g. Sln, Chrng), membrane and structural proteins (e.g. Tnni1, Mylk2, Col8a1, Adam33), cell growth and differentiation (e.g. Gpc3, Jund), immune response (e.g. C3, C4a), and others (e.g. Lrp8, Msln, Klkc1, Epn3). Gene ontology analysis revealed several significantly enriched functional inter-relationships between genes influenced by non-obese T2DM. Protein-protein interaction analysis demonstrated that Stat is a potential key gene influenced by non-obese T2DM. CONCLUSIONS: Non-obese T2DM alters cardiac gene expression profile. The altered genes may be involved in the development of cardiac pathologies and could be potential therapeutic targets in non-obese T2DM

    Activation of AP-1 Contributes to the β-Adrenoceptor–Mediated Myocardial Induction of Interleukin-6

    No full text
    The induction of proinflammatory cytokines in stressed myocardium is considered an innate immune response, but the role of β-adrenergic signaling in this proinflammatory response and the mechanisms of cardioprotection by β-blockers are not fully understood. In the present study, we analyzed interleukin-6 (IL-6) formation and promoter activation in β-adrenoceptor-stimulated neonatal rat cardiomyocytes, in transgenic mice with cardiac overexpression of β1-adrenoceptors, and in failing human myocardium. IL-6 formation and release in cultured cardiomyocytes under β-adrenoceptor stimulation requires the activation of activating protein-1 (AP-1) binding sites and of cAMP response elements (CRE) in the IL-6 promoter, but this release (140 ± 6 pg/mL medium under 10−6 M isoproterenol vs. 81 ± 3 pg/mL unstimulated, P < 0.05) is moderate compared with that under inflammatory stimulation (855 ± 44 pg/mL, endotoxin 0.1μg/mL). Similarly, IL-6 is induced together with CRE- and AP-1 activation in the left ventricle (LV) of β1-transgenic mice before the onset of failure. However, we observed IL-6 induction with activation of NF-κB in addition to CRE and AP-1 in β1-transgenic mice at the age of 22 weeks and in explanted human LV after full development of failure. Treatment with β-blockers lowered myocardial IL-6 as well as AP-1, NF-κB, and CRE activation. Therefore, the activation of AP-1 and CRE is part of β-adrenergic signal transduction for IL-6 induction in nonfailing and failing cardiomyocytes, whereas NF-κB activation contributes only in overloaded failing myocardium

    Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death

    No full text

    Cardiac Intercellular Communication: Are Myocytes and Fibroblasts Fair-Weather Friends?

    No full text
    corecore