781 research outputs found

    Analysis and synthesis of Markov Jump Linear systems with time-varying delays and partially known transition probabilities

    Get PDF
    In this note, the stability analysis and stabilization problems for a class of discrete-time Markov jump linear systems with partially known transition probabilities and time-varying delays are investigated. The time-delay is considered to be time-varying and has a lower and upper bounds. The transition probabilities of the mode jumps are considered to be partially known, which relax the traditional assumption in Markov jump systems that all of them must be completely known a priori. Following the recent study on the class of systems, a monotonicity is further observed in concern of the conservatism of obtaining the maximal delay range due to the unknown elements in the transition probability matrix. Sufficient conditions for stochastic stability of the underlying systems are derived via the linear matrix inequality (LMI) formulation, and the design of the stabilizing controller is further given. A numerical example is used to illustrate the developed theory. © 2008 IEEE.published_or_final_versio

    High recurrence rate supports need for secondary prophylaxis in non-HIV patients with disseminated mycobacterium avium complex infection: a multi-center observational study

    Get PDF
    © 2016 Sridhar et al.Background: Long-term outcomes in non-HIV immunocompromised patients with disseminated Mycobacterium avium complex (dMAC) infections are unknown and the need for post-treatment secondary prophylaxis against MAC is uncertain in this setting. The objective of this study was to determine the need of continuing secondary anti-MAC prophylaxis in non-HIV patients after completing treatment of the primary dMAC episode. Methods: We conducted a ten-year multi-center analysis of non-HIV immunosuppressed patients with dMAC infections in Hong Kong. Results: We observed sixteen patients with dMAC during the study period of which five (31 %) were non-HIV immunosuppressed patients. In the non-HIV immunosuppressed group, three patients completed a treatment course without secondary prophylaxis, one patient received azithromycin-based secondary prophylaxis and one patient was still receiving therapy for the first dMAC episode. All the three patients who completed treatment without being given secondary prophylaxis developed recurrent dMAC infection requiring retreatment. Conclusions: In view of the high rate of dMAC infection recurrence in non-HIV immunocompromised patients following treatment completion, our data support long-term anti-MAC suppression therapy after treatment of the first dMAC infection episode in immunocompromised non-HIV patients, as is recommended for patients with advanced HIV. Tests of cell mediated immune function need to be evaluated to guide prophylaxis discontinuation in non-HIV patients.published_or_final_versio

    Information Visualisation for Project Management: Case Study of Bath Formula Student Project

    Get PDF
    This paper contributes to a better understanding and design of dashboards for monitoring of engineering projects based on the projects’ digital footprint and user-centered design approach. The paper presents an explicit insight-based framework for the evaluation of dashboard visualisations and compares the performance of two groups of student engineering project managers against the framework: a group with the dashboard visualisations and a group without the dashboard. The results of our exploratory study demonstrate that student project managers who used the dashboard generated more useful information and exhibited more complex reasoning on the project progress, thus informing knowledge of the provision of information to engineers in support of their project understanding

    Introduction to semantic e-Science in biomedicine

    Get PDF
    The Semantic Web technologies provide enhanced capabilities that allow data and the meaning of the data to be shared and reused across application, enterprise, and community boundaries, better enabling integrative research and more effective knowledge discovery. This special issue is intended to give an introduction of the state-of-the-art of Semantic Web technologies and describe how such technologies would be used to build the e-Science infrastructure for biomedical communities. Six papers have been selected and included, featuring different approaches and experiences in a variety of biomedical domains

    Carotid Body AT4 Receptor Expression and its Upregulation in Chronic Hypoxia

    Get PDF
    Hypoxia regulates the local expression of angiotensin-generating system in the rat carotid body and the me-tabolite angiotensin IV (Ang IV) may be involved in the modulation of carotid body function. We tested the hypothesis that Ang IV-binding angiotensin AT4 receptors play a role in the adaptive change of the carotid body in hypoxia. The expression and localization of Ang IV-binding sites and AT4 receptors in the rat carotid bodies were studied with histochemistry. Specific fluorescein-labeled Ang IV binding sites and positive staining of AT4 immunoreactivity were mainly found in lobules in the carotid body. Double-labeling study showed the AT4 receptor was localized in glomus cells containing tyrosine hydroxylase, suggesting the expression in the chemosensitive cells. Intriguingly, the Ang IV-binding and AT4 immunoreactivity were more intense in the carotid body of chronically hypoxic (CH) rats (breathing 10% oxygen for 4 weeks) than the normoxic (Nx) control. Also, the protein level of AT4 receptor was doubled in the CH comparing with the Nx group, supporting an upregulation of the expression in hypoxia. To examine if Ang IV induces intracellular Ca2+ response in the carotid body, cytosolic calcium ([Ca2+]i) was measured by spectrofluorimetry in fura-2-loaded glomus cells dissociated from CH and Nx carotid bodies. Exogenous Ang IV elevated [Ca2+]i in the glomus cells and the Ang IV response was significantly greater in the CH than the Nx group. Hence, hypoxia induces an upregulation of the expression of AT4 receptors in the glomus cells of the carotid body with an increase in the Ang IV-induced [Ca2+]i elevation. This may be an additional pathway enhancing the Ang II action for the activation of chemoreflex in the hypoxic response during chronic hypoxia

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Deletion of the WD40 Domain of LRRK2 in Zebrafish Causes Parkinsonism-Like Loss of Neurons and Locomotive Defect

    Get PDF
    LRRK2 plays an important role in Parkinson's disease (PD), but its biological functions are largely unknown. Here, we cloned the homolog of human LRRK2, characterized its expression, and investigated its biological functions in zebrafish. The blockage of zebrafish LRRK2 (zLRRK2) protein by morpholinos caused embryonic lethality and severe developmental defects such as growth retardation and loss of neurons. In contrast, the deletion of the WD40 domain of zLRRK2 by morpholinos targeting splicing did not induce severe embryonic developmental defects; rather it caused Parkinsonism-like phenotypes, including loss of dopaminergic neurons in diencephalon and locomotion defects. These neurodegenerative and locomotion defects could be rescued by over-expressing zLRRK2 or hLRRK2 mRNA. The administration of L-dopa could also rescue the locomotion defects, but not the neurodegeneration. Taken together, our results demonstrate that zLRRK2 is an ortholog of hLRRK2 and that the deletion of WD40 domain of zLRRK2 provides a disease model for PD

    MCT Expression and Lactate Influx/Efflux in Tanycytes Involved in Glia-Neuron Metabolic Interaction

    Get PDF
    Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V) tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs) in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
    corecore