10 research outputs found

    Mucin Dynamics in Intestinal Bacterial Infection

    Get PDF
    Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection

    The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria

    No full text
    We have recently shown that the colon is protected by an inner mucus layer that efficiently separates the bacteria in the outer mucus from the epithelial cells. The inner mucus is impervious for bacteria and built by a network formed by the MUC2 mucin. Lack or defects in this inner mucus layer allow bacteria to reach the epithelia, something that triggers colon inflammation

    The gastrointestinal mucus system in health and disease

    No full text

    Mucin methods: Genes encoding mucins and their genetic variation with a focus on gel-forming mucins

    No full text
    Mucin genes encode the polypeptide backbone of the mucin glycoproteins which are expressed on all epithelial surfaces and are major constituents of the mucus layer. Mucins are, thus, expressed at the interface between the external and the internal environment of the organism, and represent the first line of defence of our body. These genes often have an extensive region of repetitive exonic sequence which codes for the heavily glycosylated domain, whose roles include bacterial interactions and gel hydration. This region shows, in several of the genes, considerable inter-individual variation in repeat number and sequence. Because of their site of expression and their high variability in this important domain, mucin genes are good candidates for conferring differences in genetic susceptibility to multifactorial epithelial and inflammatory disease. However, progress in characterizing the genes has been considerably slower than the rest of the genome because of their size and the GC-rich content of the large, repetitive variable region. Some of the issues relating to the study of these genes are discussed in this chapter. In addition, methods and approaches that have been used successfully are described

    Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases

    No full text
    corecore