79 research outputs found

    Do contaminants compromise the use of recycled nutrients in organic agriculture? A review and synthesis of current knowledge on contaminant concentrations, fate in the environment and risk assessment

    Get PDF
    Use of nutrients recycled from societal waste streams in agriculture is part of the circular economy, and in line with organic farming principles. Nevertheless, diverse contaminants in waste streams create doubts among organic farmers about potential risks for soil health. Here, we gather the current knowledge on contaminant levels in waste streams and recycled nutrient sources, and discuss associated risks. For potentially toxic elements (PTEs), the input of zinc (Zn) and copper (Cu) from mineral feed supplements remains of concern, while concentrations of PTEs in many waste streams have decreased substantially in Europe. The same applies to organic contaminants, although new chemical groups such as flame retardants are of emerging concern and globally contamination levels differ strongly. Compared to inorganic fertilizers, application of organic fertilizers derived from human or animal feces is associated with an increased risk for environmental dissemination of antibiotic resistance. The risk depends on the quality of the organic fertilizers, which varies between geographical regions, but farmland application of sewage sludge appears to be a safe practice as shown by some studies (e.g. from Sweden). Microplastic concentrations in agricultural soils show a wide spread and our understanding of its toxicity is limited, hampering a sound risk assessment. Methods for assessing public health risks for organic contaminants must include emerging contaminants and potential interactions of multiple compounds. Evidence from long-term field experiments suggests that soils may be more resilient and capable to degrade or stabilize pollutants than often assumed. In view of the need to source nutrients for expanding areas under organic farming, we discuss inputs originating from conventional farms vs. non-agricultural (i.e. societal) inputs. Closing nutrient cycles between agriculture and society is feasible in many cases, without being compromised by contaminants, and should be enhanced, aided by improved source control, waste treatment and sound risk assessments

    Comparative Analysis of PvPAP Gene Family and Their Functions in Response to Phosphorus Deficiency in Common Bean

    Get PDF
    BACKGROUND: Purple acid phosphatases (PAPs) play a vital role in adaptive strategies of plants to phosphorus (P) deficiency. However, their functions in relation to P efficiency are fragmentary in common bean. PRINCIPAL FINDINGS: Five PvPAPs were isolated and sequenced in common bean. Phylogenetic analysis showed that PvPAPs could be classified into two groups, including a small group with low molecular mass, and a large group with high molecular mass. Among them, PvPAP3, PvPAP4 and PvPAP5 belong to the small group, while the other two belong to the large group. Transient expression of 35S:PvPAPs-GFP on onion epidermal cells verified the variations of subcellular localization among PvPAPs, suggesting functional diversities of PvPAPs in common bean. Quantitative PCR results showed that most PvPAPs were up-regulated by phosphate (Pi) starvation. Among them, the expression of the small group PvPAPs responded more to Pi starvation, especially in the roots of G19833, the P-efficient genotype. However, only overexpressing PvPAP1 and PvPAP3 could result in significantly increased utilization of extracellular dNTPs in the transgenic bean hairy roots. Furthermore, overexpressing PvPAP3 in Arabidopsis enhanced both plant growth and total P content when dNTPs were supplied as the sole external P source. CONCLUSIONS: The results suggest that PvPAPs in bean varied in protein structure, response to P deficiency and subcellular localization. Among them, both PvPAP1 and PvPAP3 might function as utilization of extracellular dNTPs

    Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe

    Full text link

    Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants

    Get PDF
    How species coexist despite competing for the same resources that are in limited supply is central to our understanding of the controls on biodiversity. Resource partitioning may facilitate coexistence, as co-occurring species use different sources of the same limiting resource. In plant communities, however, direct evidence for partitioning of the commonly limiting nutrient, phosphorus (P), has remained scarce due to the challenges of quantifying P acquisition from its different chemical forms present in soil. To address this, we used 33P to directly trace P uptake from DNA, orthophosphate and calcium phosphate into monocultures and mixed communities of plants growing in grassland soil. We show that co-occurring plants acquire P from these important organic and mineral sources in different proportions, and that differences in P source use are consistent with the species’ root adaptations for P acquisition. Furthermore, the net benefit arising from niche plasticity (the gain in P uptake for a species in a mixed community compared to monoculture) correlates with species abundance in the wild, suggesting that niche plasticity for P is a driver of community structure. This evidence for P resource partitioning and niche plasticity may explain the high levels of biodiversity frequently found in P-limited ecosystems worldwide

    Effect of application rate of commercial lignite coal-derived amendments on early-stage growth of Medicago sativa and soil health, in acidic soil conditions

    No full text
    The occurrence of acidic soils in Australia limits agricultural productivity. It is claimed that commercially available lignite coal-derived products have the capacity to buffer soil pH. In addition, manufacturers of these products and farmer anecdotal evidence suggest promotion of plant shoot and root growth. This study investigated the effect of application rate of lignite coal-derived amendments on the early-stage growth of a pasture legume, lucerne (Medicago sativa), and soil health in a soil type common to south-eastern Australia, in a glasshouse setting. Measurements of root and shoot biomass, microbial biomass C and soil pH were taken after 6 weeks of growth. Differences were observed between the amendment application rates, particularly lucerne shoot and root growth in soil amended with 20 kg/ha of soluble K-humate granules. The results of this study will assist farmers in making decisions about the value and effectiveness of lignite coal-derived amendments on plant growth as well as their potential to improve soil health.Karen Little, Michael Rose, Antonio Patti, Timothy Cavagnaro, and Roy Jackso

    Soil organic phosphorus and microbial community composition as affected by 26 years of different management strategies

    No full text
    The original publication can be found at www.springerlink.comAgricultural management can affect soil organic matter chemistry and microbial community structure, but the relationship between the two is not well understood. We investigated the effect of crop rotation, tillage and stubble management on forms of soil phosphorus (P) as determined by solution 31P nuclear magnetic resonance spectroscopy and microbial community composition using fatty acid methyl ester analysis in a long-term field experiment (26 years) on a Chromic Luvisol in New South Wales, Australia. An increase in soil organic carbon, nitrogen and phosphorus compared to the beginning of the experiment was found in a rotation of wheat and subterranean clover with direct drill and mulching, while stubble burning in wheat–lupin and wheat–wheat rotations led to soil organic matter losses. Microbial biomass was highest in the treatment with maximum organic matter contents. The same soil P forms were detected in all samples, but in different amounts. Changes in organic P occurred mainly in the monoester region, with an increase or decrease in peaks that were present also in the sample taken before the beginning of the experiment in 1979. The microbial community composition differed between the five treatments and was affected primarily by crop rotations and to a lesser degree by tillage. A linkage between soil P forms and signature fatty acids was tentatively established, but needs to be verified in further studies.E. K. Bünemann, P. Marschner, R. J. Smernik, M. Conyers and A. M. McNeil

    Rapid changes in carbon and phosphorus after rewetting of dry soil

    No full text
    Drying–rewetting (DRW) cycles are important for soil organic matter turnover; however, few studies have considered the short-term effects on nutrient availability. The pulses in soil respiration, extractable C, P and N pools were quantified after a single DRW cycle (ten sampling times over 49 h). Soil was pre-incubated with or without glucose (2.5 g kg−1) for 10 days to induce differences in the size and activity of the microflora and then either subjected to a single DRW cycle (7-day drying period) or kept constantly moist. A resin extractable P (Presin) method was used and compared to extraction of dissolved organic (DOP) and inorganic P (DIP) with a salt solution. The pulse in soil respiration, extractable organic C (EOC), Presin, DOP and DIP was immediate and greatest in the first 2 h. The Presin pulse was two to three times that measured by solution extraction (DIP). Also, Presin quantified temporal changes in P not apparent in DIP, indicating the advantage of anion-exchange membranes in quantifying short-term changes in P availability. The Presin pulse was smaller in the soil incubated with glucose showing that P pulses will be quantitatively smaller in a soil with an active microbial biomass. In contrast to P, pre-incubation with glucose did not alter EOC concentration or the pulse in EOC after rewetting. The Presin pulse had disappeared by 49 h after DRW despite continued elevated rates of respiration. The sustained increase in DIP following DRW may have implications for plant availability or environmental losses.Clayton R. Butterly, Ann M. McNeill, Jeff A. Baldock and Petra Marschne

    Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture

    Get PDF
    Aims An essential task of agricultural systems is to im- prove internal phosphorus (P) recycling. Cover crops and tillage reduction can increase sustainability, but it is not known whether stimulation of the soil microbial commu- nity can increase the availability of soil organic P pools. Methods In a field experiment in southwest Germany, the effects of a winter cover crop mixture (vs. bare fallow) and no-till (vs. non-inversion tillage) on microbial P- cycling were assessed with soybean as the main crop. Microbial biomass, phospholipid fatty acids (PLFAs), P cycling enzymes, and carbon-substrate use capacity were linked for the first time with the lability of organic P pools measured by enzyme addition assays (using phosphodi- esterase, non-phytase-phosphomonoesterase and fungal phytase). Results Microbial phosphorus, phosphatase, and fatty acids increased under cover crops, indicating an en- hanced potential for organic P cycling. Enzyme-stable organic P shifted towards enzyme-labile organic P pools. Effects of no-till were weaker, and a synergy with cover crops was not evident. Conclusions In this experiment, cover crops were able to increase the microbially mediated internal P cycling in a non-P-limited, temperate agroecosystems
    • …
    corecore