338 research outputs found

    Enhanced Photoresponse of FeSâ‚‚ Films: The Role of Marcasite-Pyrite Phase Junctions

    Get PDF
    The beneficial role of marcasite in iron-sulfide-based photo-electrochemical applications is reported for the first time. A spectacular improvement of the photoresponse observed experimentally for mixed pyrite/marcasite-FeS2 films can be ascribed to the presence of p/m phase junctions at the interface. Density functional theory calculations show that the band alignment at the phase boundary contributes to enhanced charge separation and transfer across the interface

    Electronic Structure and Interface Energetics of CuBi2O4 Photoelectrodes

    Get PDF
    CuBi2O4 exhibits significant potential for the photoelectrochemical (PEC) conversion of solar energy into chemical fuels, owing to its extended visible-light absorption and positive flat band potential vs the reversible hydrogen electrode. A detailed understanding of the fundamental electronic structure and its correlation with PEC activity is of significant importance to address limiting factors, such as poor charge carrier mobility and stability under PEC conditions. In this study, the electronic structure of CuBi2O4 has been studied by a combination of hard X-ray photoemission spectroscopy, resonant photoemission spectroscopy, and X-ray absorption spectroscopy (XAS) and compared with density functional theory (DFT) calculations. The photoemission study indicates that there is a strong Bi 6s–O 2p hybrid electronic state at 2.3 eV below the Fermi level, whereas the valence band maximum (VBM) has a predominant Cu 3d–O 2p hybrid character. XAS at the O K-edge supported by DFT calculations provides a good description of the conduction band, indicating that the conduction band minimum is composed of unoccupied Cu 3d–O 2p states. The combined experimental and theoretical results suggest that the low charge carrier mobility for CuBi2O4 derives from an intrinsic charge localization at the VBM. Also, the low-energy visible-light absorption in CuBi2O4 may result from a direct but forbidden Cu d–d electronic transition, leading to a low absorption coefficient. Additionally, the ionization potential of CuBi2O4 is higher than that of the related binary oxide CuO or that of NiO, which is commonly used as a hole transport/extraction layer in photoelectrodes. This work provides a solid electronic basis for topical materials science approaches to increase the charge transport and improve the photoelectrochemical properties of CuBi2O4-based photoelectrodes

    Cu Electrodeposition on Nanostructured MoS2 and WS2 and Implications for HER Active Site Determination

    Get PDF
    Cu electrodeposition in both underpotential and overpotential regimes on nanostructured MoS2 and WS2 prepared by plasmaenhanced atomic layer deposition has been studied in detail. A combination of electrochemical methods, advanced characterization by X-ray absorption spectroscopy (XAS) as well as theoretical modelling were employed to reveal Cu adsorption modes on transition metal dichalcogenides (TMDs) from initial stages until bulk deposition. Since Cu UPD on TMDs has been used recently to evaluate the number of electrochemically active sites (NAS) for H2 evolution reaction, we evaluate and discuss here the implications of the Cu electrodeposition phenomena on nanostructured MoS2 and WS2 gauging the general applicability of the Cu UPD method for number of HER active sites determination in TMDs. Although an apparently better correlation of HER current density with Cu UPD charge than with double layer capacitance is found, the Cu UPD method cannot be used quantitatively because of the absence of a clear H UPD phenomenon on the studied nanostructured TMDs. This is in contrast to platinum group metal catalysts where H UPD and Cu UPD sites are strongly correlated

    Author profile Emiel J.M. Hensen

    No full text

    Koolstofketens 'uit wat dan ook'

    No full text
    No abstrac
    • …
    corecore