116 research outputs found

    Camera calibration by an integrating sphere for the auroral tomography observation

    Get PDF
    Auroral tomography is a technique to reconstruct three-dimensional (3 D) luminous structure from multiple two-dimensional (2D) images of aurora. The reconstructed auroral luminous structure can provide useful information such as altitude profiles and vortex configuration. In order to obtain the absolute volume emission rate of the aurora distribution, it is essential to have the absolute sensitivity calibration of imaging by formulating the relation between pixel values and absolute brightness of corresponding direction of each pixel. The relation between pixel value and brightness is formulated and calculated from the absolute sensitivity calibration. We took the flat-field images of the integrating sphere calibration standard at National Institute of Polar Research using one camera system, which was installed at Merasjarvi (one of the ALIS observing site, ALIS is the acronym of Auroral Large Imaging System, which is a multi-station ground-based optical observing network). National Institute of Polar Research, Japan and Swedish Institute of Space Physics in Kiruna, Sweden have carried out collaborative observations for auroral tomography under ALIS. The sensitivity calibration result is applied to the reconstruction of volume emission rate distribution from the tomographic images observed by ALIS on March 1, 1998

    Polar Patrol Balloon experiment in Antarctica during 2002-2003

    Get PDF
    The first scientific campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was performed at Syowa Station in Antarctica during 1990-1991 and 1992-1993. Based on the fruitful results of the 1st-PPB experiment, the next campaign (2nd-PPB) will be carried out in the austral summer of 2002-2003. This paper summarizes the 2nd-PPB experiment. Four balloons in total will be launched to make astrophysics observations (1 balloon) and upper atmosphere physics observations (3 balloons). The first payload will carry a very sophisticated instrument that will observe primary cosmic-ray electrons in the energy range of 10 GeV - 1 TeV. The payloads of the latter 3 flights are identical to each other. They will be launched in as rapid a succession as weather conditions permit to form a cluster of balloons during their flights. Such a "Balloon Cluster" is suitable for observing the temporal evolution and spatial distribution of various phenomena in the various magnetospheric and ionospheric regions and their boundaries that the balloons will traverse during their circumpolar trajectory. The expected flight duration of each balloon is 20 days. Observation data will be obtained mainly by a satellite communication system with a much higher temporal resolution than that used in the 1st-PPB experiment

    Significant Delayed Activation on the Right Ventricular Outflow Tract Represents Complete Right Bundle-Branch Block Pattern in Brugada Syndrome

    Get PDF
    Background: The appearance of complete right bundle-branch block (CRBBB) in Brugada syndrome (BrS) is associated with an increased risk of ventricular fibrillation. The pathophysiological mechanism of CRBBB in patients with BrS has not been well established. We aimed to clarify the significance of a conduction delay zone associated with arrhythmias on CRBBB using body surface mapping in patients with BrS. Methods and Results: Body surface mapping was recorded in 11 patients with BrS and 8 control patients both with CRBBB. CRBBB in control patients was transiently exhibited by unintentional catheter manipulation (proximal RBBB). Ventricular activation time maps were constructed for both of the groups. We divided the anterior chest into 4 areas (inferolateral right ventricle [RV], RV outflow tract [RVOT], intraventricular septum, and left ventricle) and compared activation patterns between the 2 groups. Excitation propagated to the RV from the left ventricle through the intraventricular septum with activation delay in the entire RV in the control group (proximal RBBB pattern). In 7 patients with BrS, excitation propagated from the inferolateral RV to the RVOT with significant regional activation delay. The remaining 4 patients with BrS showed a proximal RBBB pattern with the RVOT activation delay. The ventricular activation time in the inferolateral RV was significantly shorter in patients with BrS without a proximal RBBB pattern than in control patients. Conclusions: The CRBBB morphology in patients with BrS consisted of 2 mechanisms: (1) significantly delayed conduction in the RVOT and (2) proximal RBBB with RVOT conduction delay. Significant RVOT conduction delay without proximal RBBB resulted in CRBBB morphology in patients with BrS

    A simulation environment to simulate lower-hybrid-wave-driven plasmas efficiently

    Get PDF
    In this study a hybrid simulation environment to investigate the lower-hybrid-wave-driven tokamak plasmas is presented, and its application to the spherical tokamak TST-2 is described. These plasma are formed and driven by radio-frequency waves without the use of the central solenoid, and are characterized by low density and low magnetic field. A hybrid simulation environment which is divided into two groups, one using magneto-hydrodynamic (MHD) as well as particle-in-cell (PIC) approaches, and the second group using ray-tracing and Fokker–Planck solvers, is applied to describe the behavior of energetic electrons, bulk plasma, wave propagation, and the wave-particle interaction. Both groups of solvers can be coupled via the energetic-particle velocity distribution function and the equilibrium conditions of magnetic field, pressure, and density profiles to obtain a self-consistent solution. First results show the impact of a self-consistent equilibrium on ray trajectories and current density profiles. Therefore, new insights in lower-hybrid-wave-driven plasmas of TST-2 can be obtained using the proposed hybrid simulation environment

    Observations of hard X-rays of auroral origin with Polar Patrol Balloons No. 8 and 10

    Get PDF
    In the Polar Patrol Balloon (PPB) project, two balloons named PPB-8 and -10 were launched in rapid succession to form a cluster of balloons during their flight on January 13, 2003, from Syowa Station, Antarctica. In order to make the two-dimensional images for auroral X-rays and to obtain the energy spectra of auroras with energy range from 30 keV to 778 keV, the same instruments for hard X-rays were installed on PPB-8 and -10, respectively. These detection systems observed several auroral X-ray events during the flight. In particularly on January 25, 2003, strong auroral events were detected at about 0919 UT by PPB-10 and at 0927 UT by PPB-8. The aurora observed by PPB-10 was observed after about 8 min by PPB-8 located a 650 km west of PPB-10. The energy spectra of the bright aurora at 0919 UT and 0927 UT for PPB-10 and -8 is obtained as E0 = (78+-5) keV and (70+-5) keV, respectively

    High energy electron observation by Polar Patrol Balloon flight in Antarctica

    Get PDF
    We accomplished a balloon observation of the high-energy cosmic-ray electrons in 10-1000GeV to reveal the origin and the acceleration mechanism. The observation was carried out for 13 days at an average altitude of 35km by the Polar Patrol Balloon (PPB) around Antarctica in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillation counters sandwiched between lead plates. The geometrical factor is about 600cm^2sr, and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by a test flight at the Sanriku Balloon Center and by an accelerator beam test using the CERN-SPS (Super Proton Synchrotron at CERN). The new telemetry system using the Iridium satellite, the power system supplied by solar panels and the automatic flight level control operated successfully during the flight. We collected 5.7×10^3 events over 100GeV, and selected the electron candidates by a preliminary data analysis of the shower images. We report here an outline of both detector and observation, and the first result of the electron energy spectrum over 100GeV obtained by an electronic counter

    W-band millimeter-wave back-scattering system for high wave number turbulence measurements in LHD

    Get PDF
    A 90 GHz W-band millimeter-wave back-scattering system is designed and installed for measuring electron scale turbulence (kρs ∼ 40). Ametal lens relay antenna is used for in-vessel beam focusing, and a beam diameter of less than 40mm is achieved in the plasma core region.This antenna can be steered at an angle of 159○ ± 6○, which almost covers the plasma radius. The estimated size of the scattering volume is ∼105mm at the edge and 135mm at the core, respectively. A 60m corrugated waveguide is used to achieve a low transmission loss of ∼8 dB. A heterodyne detection system for millimeter-wave circuits with probing power modulation can distinguish the scattered signal frombackground noise

    増強されたECHアンテナシステムを用いたLHDにおけるECCD適用性の向上

    Get PDF
    The power injection system for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) was modified and upgraded. An outside horizontal port 2-O on the Large Helical Device (LHD) was furnished with two antenna systems for the EC-waves of the frequencies of 77 and 154 GHz, respectively. In addition to them, two new antenna systems for 77 and 154 GHz waves were installed in the 2-O port. Each antenna in the 2-O port has wide range of EC-wave beam direction control so that these are suitable for ECCD which requires toroidally oblique EC-wave beam injection. In the LHD 18th experimental campaign in 2014-2015, an ECCD experiment with second harmonic resonance condition, on-axis magnetic field of 1.375 T for 77 GHz waves, was performed in which some combination patterns of two 77 GHz ECCDs were applied. The discharges of dual co- and dual counter-ECCDs showed remarkable plasma currents of ∼±26 kA in both of the co- and counter-directions, by 6 s pulse duration and injection powers of 366 and 365 kW. The new antenna has nearly the same capability for ECCD with that of the existing antenna. The improvement in the flexibility of the ways of applying plural ECCDs will offer a highly useful tool for investigations on the phenomena concerning with the plasma current such as magnetohydro-dynamics
    corecore