32 research outputs found
Excitotoxic lesions of the perirhinal cortex leave intact rats’ gustatory sensory preconditioning
We report findings from two sensory preconditioning experiments in which rats consumed two flavoured solutions, each with two gustatory components (AX and BY), composed of sweet, bitter, salt, and acid elements. After this pre-exposure, rats were conditioned to X by pairing with lithium chloride. Standard sensory preconditioning was observed: Consumption of flavour A was less than that of B. We found that sensory preconditioning was maintained when X was added to A and B. Both experiments included one group of rats with lesions of the perirhinal cortex, which did not influence sensory preconditioning. We discuss our findings in the light of other sensory preconditioning procedures that involve the perirhinal cortex and conclude that differences in experimental variables invoke different mechanisms of sensory preconditioning, which vary in their requirement of the perirhinal cortex. </jats:p
The Genomic Signature of Crop-Wild Introgression in Maize
The evolutionary significance of hybridization and subsequent introgression
has long been appreciated, but evaluation of the genome-wide effects of these
phenomena has only recently become possible. Crop-wild study systems represent
ideal opportunities to examine evolution through hybridization. For example,
maize and the conspecific wild teosinte Zea mays ssp. mexicana, (hereafter,
mexicana) are known to hybridize in the fields of highland Mexico. Despite
widespread evidence of gene flow, maize and mexicana maintain distinct
morphologies and have done so in sympatry for thousands of years. Neither the
genomic extent nor the evolutionary importance of introgression between these
taxa is understood. In this study we assessed patterns of genome-wide
introgression based on 39,029 single nucleotide polymorphisms genotyped in 189
individuals from nine sympatric maize-mexicana populations and reference
allopatric populations. While portions of the maize and mexicana genomes were
particularly resistant to introgression (notably near known
cross-incompatibility and domestication loci), we detected widespread evidence
for introgression in both directions of gene flow. Through further
characterization of these regions and preliminary growth chamber experiments,
we found evidence suggestive of the incorporation of adaptive mexicana alleles
into maize during its expansion to the highlands of central Mexico. In
contrast, very little evidence was found for adaptive introgression from maize
to mexicana. The methods we have applied here can be replicated widely, and
such analyses have the potential to greatly informing our understanding of
evolution through introgressive hybridization. Crop species, due to their
exceptional genomic resources and frequent histories of spread into sympatry
with relatives, should be particularly influential in these studies