48 research outputs found

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Circles in the sea: annual courtship “torus” behaviour of basking sharks Cetorhinus maximus identified in the eastern North Atlantic Ocean

    Get PDF
    Groups of basking sharks engaged in circling behaviour are rarely observed, and their function remains enigmatic in the absence of detailed observations. Here, underwater and aerial video recordings of multiple circling groups of basking sharks during late summer (August and September 2016–2021) in the eastern North Atlantic Ocean showed groups numbering between 6 and 23 non-feeding individuals of both sexes. Sharks swam slowly in a rotating “torus” (diameter range: 17–39 m), with individuals layered vertically from the surface to a maximum depth of 16 m. Within a torus, sharks engaged in close-following, echelon, close-flank approach or parallel-swimming behaviours. Measured shark total body lengths were 5.4–9.5 m (mean LT: 7.3 m ± 0.9 s.d.; median: 7.2 m, n = 27), overlapping known lengths of sexually mature males and females. Males possessed large claspers with abrasions that were also observed on female pectoral fins. Female body colouration was paler than that of males, similar to colour changes observed during courtship and mating in other shark species. Individuals associated with most other members rapidly (within minutes), indicating toroidal behaviours facilitate multiple interactions. Sharks interacted through fin–fin and fin–body contacts, rolling to expose the ventral surfaces to following sharks, and breaching behaviour. Toruses formed in late summer when feeding aggregations in zooplankton-rich thermal fronts switched to non-feeding following and circling behaviours. Collectively, the observations explain a courtship function for toruses. This study highlights northeast Atlantic coastal waters as a critical habitat supporting courtship reproductive behaviour of endangered basking sharks, the first such habitat identified for this species globally

    Direct measurement of cruising and burst swimming speeds of the shortfin mako shark (Isurus oxyrinchus) with estimates of field metabolic rate

    Get PDF
    The shortfin mako shark is a large-bodied pursuit predator thought to be capable of the highest swimming speeds of any elasmobranch and potentially one of the highest energetic demands of any marine fish. Nonetheless, few direct speed measurements have been reported for this species. Here, animal-borne bio-loggers attached to two mako sharks were used to provide direct measurements of swimming speeds, kinematics and thermal physiology. Mean sustained (cruising) speed was 0.90 m s−1 (±0.07 s.d.) with a mean tail-beat frequency (TBF) of 0.51 Hz (±0.16 s.d.). The maximum burst speed recorded was 5.02 m s−1 (TBFmax = 3.65 Hz) from a 2 m long female. Burst swimming was sustained for 14 s (mean speed = 2.38 m s−1), leading to a 0.24°C increase in white muscle temperature in the 12.5 min after the burst. Routine field metabolic rate was estimated at 185.2 mg O2 kg−1 h−1 (at 18°C ambient temperature). Gliding behaviour (zero TBF) was more frequently observed after periods of high activity, especially after capture when internal (white muscle) temperature approached 21°C (ambient temperature: 18.3°C), indicating gliding probably functions as an energy recovery mechanism and limits further metabolic heat production. The results show shortfin mako sharks generally cruise at speeds similar to other endothermic fish – but faster than ectothermic sharks – with the maximum recorded burst speed being among the highest so far directly measured among sharks, tunas and billfishes. This newly recorded high-oxygen-demand performance of mako sharks suggests it may be particularly vulnerable to habitat loss due to climate-driven ocean deoxygenatio

    #Deathbedlive:the end-of-life trajectory, reflected in a cancer patient's tweets

    Get PDF
    Abstract Background Understanding physical and psycho-social illness trajectories towards the end of life can help in the planning of palliative and supportive care. With terminal patients increasingly seeking and sharing health information and support via social media, it is timely to examine whether these trajectories are reflected in their digital narratives. In this exploratory study, we analysed the Twitter feed of prominent cancer sufferer and physician, Kate Granger, over the final 6 months of her life. Methods With the consent of Kate’s widower, Chris Pointon, 1628 Twitter posts from @GrangerKate were manually screened. The 550 tweets judged relevant to her disease were qualitatively content analysed with reference to the six modifiable dimensions of the patient experience in Emanuel and Emanuel’s ‘framework for a good death’. The frequency of each tweet category was charted over time and textual content was examined and cross-referenced with key events, to obtain a deeper understanding of its nature and significance. Results Tweets were associated with physical symptoms (N = 270), psychological and cognitive symptoms (N = 213), social relationships and support (N = 85), economic demands and care giving needs (N = 85), hopes and expectations (N = 51) and spiritual beliefs (N = 7). While medical treatments and procedures were discussed in detail, medical information-seeking was largely absent, likely reflecting Kate clinical expertise. Spirituality was expressed more as hope in treatments or “someone out there listening”, than in religious terms. The high value of Kate’s palliative care team was a dominant theme in the support category, alongside the support she received from her online community of fellow sufferers, friends, family and colleagues. Significant events, such as medical procedures and hospital stays generated the densest Twitter engagement. Transitions between trajectory phases were marked by changes in the relative frequency of tweet-types. Conclusions In Kate’s words, “the power of patient narrative cannot be underestimated”. While this analysis spanned only 6 months, it yielded rich insights. The results reflect theorised end-of-life dimensions and reveal the potential of social media data and digital bio-ethnography to shine a light on terminal patients’ lived experiences, coping strategies and support needs, suggesting new opportunities for enhancing personalised palliative care and avenues for further research

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur

    Non-ionic Thermoresponsive Polymers in Water

    Full text link
    corecore