38 research outputs found

    Structural identification of oxidized acyl-phosphatidylcholines that induce platelet activation

    Get PDF
    Oxidation of low-density lipoprotein (LDL) generates proinflammatory and prothrombotic mediators that may play a crucial role in cardiovascular and inflammatory diseases. In order to study platelet-activating components of oxidized LDL 1-stearoyl-2-arachidonoyl-sn-glycero-3- phosphocholine, a representative of the major phospholipid species in LDL, the 1-acyl-phosphatidylcholines (PC), was oxidized by CuCl2 and H2O2. After separation by high-performance liquid chromatography, three compounds were detected which induced platelet shape change at low micromolar concentrations. Platelet activation by these compounds was distinct from the pathways stimulated by platelet-activating factor, lysophosphatidic acid, lyso-PC and thromboxane A(2), as evidenced by the use of specific receptor antagonists. Further analyses of the oxidized phospholipids by electrospray ionization mass spectrometry structurally identified them as 1-stearoyl-2-azelaoyl-sn-glycero-3-phosphocholine (m/z 694; SAzPC), 1-stearoyl-2-glutaroyl-snglycero-3- phosphocholine (m/z 638; SGPC), and 1-stearoyl-2-( 5-oxovaleroyl)-sn-glycero-3-phosphocholine (m/z 622; SOVPC). These observations demonstrate that novel 1-acyl-PC which had previously been found to stimulate interaction of monocytes with endothelial cells also induce platelet activation, a central step in acute thrombogenic and atherogenic processes. Copyright (C) 2005 S. Karger AG, Basel

    Forecasted trends in disability and life expectancy in England and Wales up to 2025: a modelling study

    Get PDF
    Background Reliable estimation of future trends in life expectancy and the burden of disability is crucial for ageing societies. Previous forecasts have not considered the potential impact of trends in disease incidence. The present prediction model combines population trends in cardiovascular disease, dementia, disability, and mortality to forecast trends in life expectancy and the burden of disability in England and Wales up to 2025. Methods We developed and validated the IMPACT-Better Ageing Model—a probabilistic model that tracks the population aged 35–100 years through ten health states characterised by the presence or absence of cardiovascular disease, dementia, disability (difficulty with one or more activities of daily living) or death up to 2025, by use of evidence-based age-specific, sex-specific, and year-specific transition probabilities. As shown in the English Longitudinal Study of Ageing, we projected continuing declines in dementia incidence (2·7% per annum), cardiovascular incidence, and mortality. The model estimates disability prevalence and disabled and disability-free life expectancy by year. Findings Between 2015 and 2025, the number of people aged 65 years and older will increase by 19·4% (95% uncertainty interval [UI] 17·7–20·9), from 10·4 million (10·37–10·41 million) to 12·4 million (12·23–12·57 million). The number living with disability will increase by 25·0% (95% UI 21·3–28·2), from 2·25 million (2·24–2·27 million) to 2·81 million (2·72–2·89 million). The age-standardised prevalence of disability among this population will remain constant, at 21·7% (95% UI 21·5–21·8) in 2015 and 21·6% (21·3–21·8) in 2025. Total life expectancy at age 65 years will increase by 1·7 years (95% UI 0·1–3·6), from 20·1 years (19·9–20·3) to 21·8 years (20·2–23·6). Disability-free life expectancy at age 65 years will increase by 1·0 years (95% UI 0·1–1·9), from 15·4 years (15·3–15·5) to 16·4 years (15·5–17·3). However, life expectancy with disability will increase more in relative terms, with an increase of roughly 15% from 2015 (4·7 years, 95% UI 4·6–4·8) to 2025 (5·4 years, 4·7–6·4). Interpretation The number of older people with care needs will expand by 25% by 2025, mainly reflecting population ageing rather than an increase in prevalence of disability. Lifespans will increase further in the next decade, but a quarter of life expectancy at age 65 years will involve disability. Funding British Heart Foundation

    Functional immune responses against SARS-CoV-2 variants of concern after fourth COVID-19 vaccine dose or infection in patients with blood cancer

    Get PDF
    Patients with blood cancer continue to have a greater risk of inadequate immune responses following three COVID-19 vaccine doses and risk of severe COVID-19 disease. In the context of the CAPTURE study (NCT03226886), we report immune responses in 80 patients with blood cancer who received a fourth dose of BNT162b2. We measured neutralizing antibody titers (NAbTs) using a live virus microneutralization assay against wild-type (WT), Delta, and Omicron BA.1 and BA.2 and T cell responses against WT and Omicron BA.1 using an activation-induced marker (AIM) assay. The proportion of patients with detectable NAb titers and T cell responses after the fourth vaccine dose increased compared with that after the third vaccine dose. Patients who received B cell-depleting therapies within the 12 months before vaccination have the greatest risk of not having detectable NAbT. In addition, we report immune responses in 57 patients with breakthrough infections after vaccination

    A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs

    Get PDF
    Lead concentration in whole blood (BPb) is the primary biomarker used to monitor exposure to this metallic element. The U.S. Centers for Disease Control and Prevention and the World Health Organization define a BPb of 10 μg/dL (0.48 μmol/L) as the threshold of concern in young children. However, recent studies have reported the possibility of adverse health effects, including intellectual impairment in young children, at BPb levels < 10 μg/dL, suggesting that there is no safe level of exposure. It appears impossible to differentiate between low-level chronic Pb exposure and a high-level short Pb exposure based on a single BPb measurement; therefore, serial BPb measurements offer a better estimation of possible health outcomes. The difficulty in assessing the exact nature of Pb exposure is dependent not so much on problems with current analytical methodologies, but rather on the complex toxicokinetics of Pb within various body compartments (i.e., cycling of Pb between bone, blood, and soft tissues). If we are to differentiate more effectively between Pb stored in the body for years and Pb from recent exposure, information on other biomarkers of exposure may be needed. None of the current biomarkers of internal Pb dose have yet been accepted by the scientific community as a reliable substitute for a BPb measurement. This review focuses on the limitations of biomarkers of Pb exposure and the need to improve the accuracy of their measurement. We present here only the traditional analytical protocols in current use, and we attempt to assess the influence of confounding variables on BPb levels. Finally, we discuss the interpretation of BPb data with respect to both external and endogenous Pb exposure, past or recent exposure, as well as the significance of Pb determinations in human specimens including hair, nails, saliva, bone, blood (plasma, whole blood), urine, feces, and exfoliated teeth

    Time course study of oxidative and nitrosative stress and antioxidant enzymes in K(2)Cr(2)O(7)-induced nephrotoxicity

    Get PDF
    BACKGROUND: Potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity is associated with oxidative and nitrosative stress. In this study we investigated the relation between the time course of the oxidative and nitrosative stress with kidney damage and alterations in the following antioxidant enzymes: Cu, Zn superoxide dismutase (Cu, Zn-SOD), Mn-SOD, glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT). METHODS: Nephrotoxicity was induced in rats by a single injection of K(2)Cr(2)O(7). Groups of animals were sacrificed on days 1,2,3,4,6,8,10, and 12. Nephrotoxicity was evaluated by histological studies and by measuring creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and urinary excretion of N-acetyl-β-D-glucosaminidase (NAG) and total protein. Oxidative and nitrosative stress were measured by immunohistochemical localization of protein carbonyls and 3-nitrotyrosine, respectively. Cu, Zn-SOD, Mn-SOD, and CAT were studied by immunohistochemical localization. The activity of total SOD, CAT, GPx, and GR was also measured as well as serum and kidney content of chromium and urinary excretion of NO(2 )(-)/NO(3)(-). Data were compared by two-way analysis of variance followed by a post hoc test. RESULTS: Serum and kidney chromium content increased reaching the highest value on day 1. Nephrotoxicity was made evident by the decrease in creatinine clearance (days 1–4) and by the increase in serum creatinine (days 1–4), BUN (days 1–6), urinary excretion of NAG (days 1–4), and total protein (day 1–6) and by the structural damage to the proximal tubules (days 1–6). Oxidative and nitrosative stress were clearly evident on days 1–8. Urinary excretion of NO(2)(-)/NO(3)(- )decreased on days 2–6. Mn-SOD and Cu, Zn-SOD, estimated by immunohistochemistry, and total SOD activity remained unchanged. Activity of GPx decreased on days 3–12 and those of GR and CAT on days 2–10. Similar findings were observed by immunohistochemistry of CAT. CONCLUSION: These data show the association between oxidative and nitrosative stress with functional and structural renal damage induced by K(2)Cr(2)O(7). Renal antioxidant enzymes were regulated differentially and were not closely associated with oxidative or nitrosative stress or with kidney damage. In addition, the decrease in the urinary excretion of NO(2)(-)/NO(3)(- )was associated with the renal nitrosative stress suggesting that nitric oxide was derived to the formation of reactive nitrogen species involved in protein nitration
    corecore