4,752 research outputs found

    High-entropy alloys: a critical assessment of their founding principles and future prospects

    Get PDF
    High-entropy alloys (HEAs) are a relatively new class of materials that have gained considerable attention from the metallurgical research community over recent years. They are characterised by their unconventional compositions, in that they are not based around a single major component, but rather comprise multiple principal alloying elements. Four core effects have been proposed in HEAs: (1) the entropic stabilisation of solid solutions, (2) the severe distortion of their lattices, (3) sluggish diffusion kinetics and (4) that properties are derived from a cocktail effect. By assessing these claims on the basis of existing experimental evidence in the literature, as well as classical metallurgical understanding, it is concluded that the significance of these effects may not be as great as initially believed. The effect of entropic stabilisation does not appear to be overarching, insufficient evidence exists to establish the strain in the lattices of HEAs, and rapid precipitation observed in some HEAs suggests their diffusion kinetics are not necessarily anomalously slow in comparison to conventional alloys. The meaning and influence of the cocktail effect is also a matter for debate. Nevertheless, it is clear that HEAs represent a stimulating opportunity for the metallurgical research community. The complex nature of their compositions means that the discovery of alloys with unusual and attractive properties is inevitable. It is suggested that future activity regarding these alloys seeks to establish the nature of their physical metallurgy, and develop them for practical applications. Their use as structural materials is one of the most promising and exciting opportunities. To realise this ambition, methods to rapidly predict phase equilibria and select suitable HEA compositions are needed, and this constitutes a significant challenge. However, while this obstacle might be considerable, the rewards associated with its conquest are even more substantial. Similarly, the challenges associated with comprehending the behaviour of alloys with complex compositions are great, but the potential to enhance our fundamental metallurgical understanding is more remarkable. Consequently, HEAs represent one of the most stimulating and promising research fields in materials science at present.One of the authors (NGJ) would like to acknowledge the EPSRC/Rolls-Royce Strategic Partnership for funding under EP/M005607/1

    An integer programming Model for the Hospitals/Residents Problem with Couples

    Get PDF
    The Hospitals/Residents problem with Couples (hrc) is a generalisation of the classical Hospitals/Residents problem (hr) that is important in practical applications because it models the case where couples submit joint preference lists over pairs of (typically geographically close) hospitals. In this paper we give a new NP-completeness result for the problem of deciding whether a stable matching exists, in highly restricted instances of hrc. Further, we present an Integer Programming (IP) model for hrc and extend it the case where preference lists can include ties. Further, we describe an empirical study of an IP model for HRC and its extension to the case where preference lists can include ties. This model was applied to randomly generated instances and also real-world instances arising from previous matching runs of the Scottish Foundation Allocation Scheme, used to allocate junior doctors to hospitals in Scotland

    Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo

    Get PDF
    Live animal imaging is becoming an increasingly common technique for accurate and quantitative assessment of tumor burden over time. Bioluminescence imaging systems rely on a bioluminescent signal from tumor cells, typically generated from expression of the firefly luciferase gene. However, previous reports have suggested that either a high level of luciferase or the resultant light reaction produced upon addition of D-luciferin substrate can have a negative influence on tumor cell growth. To address this issue, we designed an expression vector that allows simultaneous fluorescence and luminescence imaging. Using fluorescence activated cell sorting (FACS), we generated clonal cell populations from a human breast cancer (MCF-7) and a mouse melanoma (B16-F10) cell line that stably expressed different levels of luciferase. We then compared the growth capabilities of these clones in vitro by MTT proliferation assay and in vivo by bioluminescence imaging of tumor growth in live mice. Surprisingly, we found that neither the amount of luciferase nor biophotonic activity was sufficient to inhibit tumor cell growth, in vitro or in vivo. These results suggest that luciferase toxicity is not a necessary consideration when designing bioluminescence experiments, and therefore our approach can be used to rapidly generate high levels of luciferase expression for sensitive imaging experiments

    Age trajectories of glycaemic traits in non-diabetic South Asian and white individuals: the Whitehall II cohort study.

    Get PDF
    South Asian individuals have an increased prevalence of type 2 diabetes, but little is known about the development of glycaemic traits in this ethnic group. We compared age-related changes in glycaemic traits between non-diabetic South Asian and white participants

    Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium

    Get PDF
    Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity

    Gamma-gamma prime-gamma double prime dual-superlattice superalloys

    Get PDF
    Improving the efficiency of gas turbine engines requires the development of new materials capable of operating at higher temperatures and stresses. Here, we report on a new polycrystalline nickel-base superalloy that has exceptional strength and thermal stability. These properties have been achieved through a four-element composition that can form both gamma prime and gamma double prime precipitates in comparable volume fractions, creating an unusual dual-superlattice microstructure. Alloying studies have shown that further property improvements can be achieved, and that with development such alloys may be suitable for future engine applications
    corecore