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Abstract

Considering a large-scale energy-harvesting wireless sensor network (EH-WSN) measuring compressible data, sparse
random projections are feasible for data well-approximation, and the sparsity of random projections impacts the
mean square error (MSE) as well as the system delay. In this paper, we propose an adaptive algorithm for sparse
random projections in order to achieve a better tradeoff between the MSE and the system delay. With the
energy-harvesting constraints, the sparsity is adapted to channel conditions via an optimal power allocation
algorithm, and the structure of the optimal power allocation solution is analyzed for some special case. The
performance is illustrated by numerical simulations.
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1 Introduction
Energy supply is a major design constraint for conven-
tional wireless sensor networks (WSNs), and the lifetime
is limited by the total energy available in the batter-
ies. Some specific sensors in WSNs may consume more
energy than the radio during a long acquisition time [1].
Replacing the batteries periodically may prolong the life-
time but not be a viable option when the replacement is
considered to be too inconvenient, too dangerous, or even
impossible when sensors are deployed in harsh condi-
tions, e.g., in toxic environments or inside human bodies.
Therefore, harvesting energy from the environment is a
promising approach to cope with battery supplies and
the increasing energy demand [2]. The energy that can
be harvested includes solar energy, piezoelectric energy,
or thermal energy, etc. and is theoretically unlimited.
Besides, background radio-frequency (RF) signals radi-
ated by ambient transmitters can also be a viable new
source for wireless power transfer (WPT) [3,4] and (Ng
et al.:Secure and Green SWIPT in Distributed Antenna
Networks with Limited Backhaul Capacity, submitted).
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Unlike the conventional WSNs that are subject to a
power constraint or sum energy constraint, each sensor
with energy harvesting capabilities is, in every time slot,
constrained to use the most amount of stored energy
currently available, although more energy may be avail-
able in the future slot. Therefore, a causality constraint
is imposed on the use of the harvested energy. Current
researches on the energy harvesting issues mostly have
focused on wireless communication systems. Gatzianas
et al. [5] considered a cross-layer resource allocation prob-
lem to maximize the total system utility, and Ho and
Zhang [6] studied the throughput maximization with
causal side information and full side information for wire-
less communication systems. Ng et al. [3] studied the
design of a resource allocation algorithm minimizing the
total transmit power for the case when the legitimate
receivers are able to harvest energy form RF signals for a
multiuser multiple-input single-output downlink system.
Energy management policies were studied for energy-
harvesting wireless sensor networks (EH-WSNs) in [7],
where sensor nodes have energy-harvesting capabilities,
aiming at maximizing the system throughput and reduc-
ing the system delay.
ForWSNs, however, accurately recovering signals is also

important. Recent results in compressive sensing (CS)
can provide an efficient signal reconstruction method for
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WSNs. Data collected from wireless sensors are typically
correlated and thus compressible in an appropriate trans-
form domain (e.g., the Fourier transform or wavelet)[8].
Therefore, the main ideal of CS is that n data values can
be well-approximated using only k << n transform coef-
ficients if the data are compressible [8-13]. In particular,
Wang et al. [13] propose a distributed compressive sens-
ing scheme for WSNs in order to reduce computational
complexity and the communication cost. It considers an
m×n sparse randommatrix with entries that have a prob-
ability g of being nonzero, so that on average there are
ng nonzeros per row. The resulted data-approximation
error rate is comparable to that of the optimal k-term
approximation if the energy of the signal is not concen-
trated in a few elements. Somehow, the sparsity factor
g of random projections impacts the accuracy of signal
reconstructions. Usually, the sparsity factor g is statisti-
cally determined according to the amount of harvested
energy and is homogeneous for all sensors [14,15]. Rana
et al. [14] only considered AWGN channels. Yang et al.
[15] took into account fading channels and studied the
sufficient conditions guaranteeing a reliable and compu-
tationally efficient data approximation for sparse random
projections. It is not surprising that the sparse random
projections based signal recovery is non-optimal since the
sparsity factor g is fixed during the entire transmission
slots and thus can not reflect the effect of channel condi-
tions. On the other hand, the system delaym, which is one
of key quantities used to characterize the performance of
random projection-based CS schemes, is expected to be
as small as possible. Upon [14] and [15], we realize that
the lower bound of the system delay also being related to
the sparsity of random projections and the larger g being
the shorter delay may be achieved. Note that there is often
a tradeoff between the system delay and the data approxi-
mation [8,16]. Therefore, in this paper, we consider fading
channels and the energy-harvesting constraints and study
the problem on adapting sparsity of random projections
according to full channel information, in order to improve
the performance of signal recovery and reduce the sys-
tem delay as well. To the best of our knowledge, very
limited work such as [15] has touched upon this topic,
which however, only provides rough discussion. The main
contributions are presented as follows:

• Considering the wireless fading channels, we verify
that the random projection matrix satisfies the
property that the inner product between two
projected vectors are preserved in expectation, and
then provide a lower bound of the system delay for
achieving an acceptable data approximation error
probability.

• We give a new definition of the sparsity of random
projections and formulate the optimal sparsity

problem which is converted into an optimal power
allocation problem for maximizing the system
throughput. Unlike the conventional energy
allocation problem, due to battery dynamics and
channel dynamics, the closed-form solution may not
be available. Therefore, we study a special case that
the battery capacity is not bounded to find the
structure of the optimal solution. Specifically, in the
case the problem is converted into a convex
optimization problem, then the closed-form solution
is obtained in terms of Lagrangian multipliers.

The rest of paper is organized as follows. Section 2 gives
the system model and overview previously known results
on sparse random projections. Section 3 redefines the
sparsity and formulate the optimal sparsity problem for
EH-WSNs. Section 4 considers a specific case and address
the structure of the optimal solution. Section 5 provides
the simulation results. Finally, Section 6 concludes the
paper.

2 Systemmodel
We consider a wireless sensor network of n sensor nodes,
each of which measure a data value si ∈ C and is capable
of energy harvesting. We assume a Rayleigh-fading chan-
nel, and the channel coefficients, denoted as hij, where
1 ≤ i ≤ m denotes the slot index and 1 ≤ j ≤ n
denotes the sensor index, are independent and identically
distributed (i.i.d) and satisfy the complex Gaussian dis-
tribution with zero mean and unit variance. We further
assume the channel remains constant in each slot. Sensor
j first multiplies its data sj by some random projections
φij ∈ R, then transmits in the ith time slot. At the receiver

yi =
n∑

j=1
hijφijsj + ei (1)

where ei is a White Gaussian distributed noise with zero
mean and variance σ 2. After m time slots, the received
vector is given as

y = (H � �)s + e = Zs + e (2)

whereH = {
hij

} ∈ C
m×n, � = {

φij
} ∈ R

m×n, Z = H��,
and the operation � is the element-wise product of two
matrices. The corresponding real-valued equation of (2) is

ŷ =
[
Re {(H � �)} −Im {(H � �)}
Im {(H � �)} Re {(H � �)}

] [
Re {s}
Im {s}

]
+

[
Re {e}
Im {e]

]

= Ẑ
[
Re {s}
Im {s}

]
+

[
Re {e}
Im {e}

]
(3)
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where Re {A} and Im {A} denote the real part and the
imaginary part of matrix A, respectively, and

Ẑ =
[
Re {(H � �)} −Im {(H � �)}
Im {(H � �)} Re {(H � �)}

]
(4)

2.1 Compressible data and sparse random projections
Suppose the aggregate sensor data s ∈ C

n from n nodes
is compressible, so that we can model it being sparse with
respect to a fixed orthonormal basis {ψj ∈ C

n : j =
1, · · · , n} [11], i.e.,

s = �x =
n∑

j=1
ψjxj (5)

Generally, for a compressible signal s the largest k trans-
form coefficients capture most of the signal information
and the k is usually referred to as the sparsity of s. The
best k-term approximation method is applied to recover
only the k largest transform coefficients and discard the
remaining as zero [8], and achieves near-optimal perfor-
mance of error probabilities. However, the random pro-
jection matrix � used in [8] is dense, which results in a
great computational complexity. Therefore, Wang et al.
[13] proposed sparse random projections to reduce the
computational complexity but guarantee that the error
probability is comparable to that achieved by the dense
random projections. More concretely, the matrix of sparse
random projections � ∈ R

m×n contains i.i.d. entries

ψij = 1√g

⎧⎨
⎩

+1 w.p. g/2
0 w.p. 1 − g

−1 w.p. g/2
(6)

where g is a factor which gives the probability of a mea-
surement and controls the degree of sparsity of random
projections, e.g., if g = 1, the random matrix has no
sparsity, and if g = log n/n, the expected number of
nonzeros in each row is log n. We can easily verify that the
entries within each row are four-wise independent, while
the entries across different rows are fully independent, i.e.,

E[φij]= 0,E[φ2
ij]= 1,E[φ4

ij]= g (7)

Therefore, each random projection vector is pseudo-
randomly generated and stored in a small space.

Corollary 1. [13] Consider a data vector u ∈ R
n which

satisfies the condition

‖u‖∞
‖u‖2 ≤ C. (8)

in addition, Let V be any set of n vectors {v1, · · · , vn} ⊂ R
n.

Suppose a sparse random matrix � ∈ R
m×n satisfies the

conditions as

E[φij]= 0,E[φ2
ij]= 1,E[φ4

ij]= g (9)

If

m =
⎧⎨
⎩
O

(
(1+γ )

ε2
C2 log n

)
, ifC2/g ≥ 	(1)

O
(

(1+γ )

ε2
log n

)
, ifC2/g ≤ O(1)

(10)

with probability at least 1 − n−γ , the random projections
1√
m�u and 1√

m�vi can produce an estimate âi for uTvi
satisfying

∣∣∣âi − uTvi
∣∣∣ ≤ ε ‖u‖2 ‖vi‖2 (11)

Corollary 1 states that sparse random projections of the
data vector and any set of n vectors can produce esti-
mates of their inner products to within a small error. Thus,
sparse random projections can produce accurate esti-
mates for the transform coefficients of the data, which are
inner products between the data and the set of orthonor-
mal bases. The sufficient condition (8) is to bound the
peak-to-total energy of the data. This guarantees that the
signal energy is not concentrated in a small number of
components. If the data is compressible in the discrete
Fourier transform with compressibility parameter θ , then
[13]

||u||∞
||u||2 ≤ C =

{
O

(
log n/

√
n
)

if θ = 1
O

(
1/

√
n
)

if 0 < θ < 1 (12)

3 Adaptive sparse random projections
3.1 Sparse random projections with channel fading
However, Wang et al. [13] only considered AWGN chan-
nel. With the assumption of channel fading, we wonder
whether the inner products are still preserved by sparse
random projections. Redefine the sparse random projec-
tion matrix as follows,

ψij = 1√gij

⎧⎨
⎩

+1 w.p. gij/2
0 w.p. 1 − gij

−1 w.p. gij/2
(13)

where gij gives the probability of a projection from sensor
node j at time slot i. The details of gij will be illustrated in
the next section.

Proposition 1. Let Ẑ be the projection matrix given by
(4). Define u = 1√

m Ẑx and v = 1√
m Ẑy as the random
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projection of two vectors x and y. Expectation and variance
of the inner product of u and v are respectively

E

[
uTv

]
= xTy (14)

Var
(
uTv

)
= 1

m

⎛
⎝(

xTy
)2 + ‖x‖22

∥∥y∥∥22 +
n∑

j=1

(
3
gij

− 3
)
x2j y

2
j

⎞
⎠

(15)

Proof: With the assumption that hij satisfies i.i.d com-
plex Gaussian distribution with zero mean and unit vari-
ance, it is not difficult to verify the following equations:

E[ ẑij]= 0,E[ ẑ2ij]= 1,E[ ẑ4ij]= 3/gij (16)
By defining independent random variables wi =(∑n

j=1 xjẑij
) (∑n

j=1 yjẑij
)
, it can be shown that uTv =

1
m
∑n

i=1 wi, and the expectation and the second moment
of wi are

E [wi] =
n∑

j=1
xjyjE

[
ẑ2ij
]

= xTy = E

[
uTv

]
(17)

E
[
w2
i
] =

n∑
j=1

x2j y
2
j E

[
ẑ4ij
]

+ 4
∑
l<m

xlylxmymE
[
ẑ2il
]
E
[
ẑ2im

]

+2
∑
l 
=m

x2l y
2
mE[ ẑ2il]E[ ẑ

2
im]

= 2
(
xTy

)2 + ‖x‖22
∥∥y∥∥22 +

n∑
j=1

(
3
gij

− 3
)
x2j y

2
j

= mVar
(
uTv

)

Proposition 1 states that an estimation of the inner
product between two vectors, using the matrix of sparse
random projections (4), are correct in expectation and
have bounded variance. If there is a signal and a matrix of
sparse random projections satisfy the conditions (8) and
(16), respectively, we can achieve the following proposi-
tion:

Proposition 2. Consider a data vector u ∈ R
n which

satisfies the condition (8). In addition, suppose a sparse
random matrix � ∈ R

m×n satisfies the condition as (16).
Let

m ≥ O

⎛
⎝ (1 + γ )

ε2

⎛
⎝2 +

n∑
j=1

3
mini gij

C2

⎞
⎠ log n

⎞
⎠ , (18)

and consider an orthonormal transform � ∈ R
n×n. Given

only x = 1√
m�u, � and � , the sparse random projections

can produce an approximation with error

∥∥u − û
∥∥2
2 ≤ (1 + ε)η ‖u‖22 (19)

with probability at least 1− n−γ , if the k largest transform
coefficients in magnitude give an approximation with error∥∥u − ûopt

∥∥2
2 ≤ η ‖u‖22.

Proof: Follow the approach of [13] and define m =
m1m2. Partition the m × n matrix � into m2 matrices
�1,�2, · · · ,�m2 , each of sizem1×n. Using the Chebyshev
inequality, we have

P
(∣∣∣wi − uTv

∣∣∣ ≥ ε ‖u‖2 ‖v‖2
)

≤ Var(wi)/ε ‖u‖2 ‖v‖2

= 1
ε2m1

⎛
⎝ (

uTv
)2

‖u‖22 ‖v‖22
+ 1 +

n∑
j=1

(
3
gij

− 3
) ∑n

j=1 u2j v
2
j

‖u‖22 ‖v‖22

⎞
⎠

≤ 1
ε2m1

⎛
⎝2 +

n∑
j=1

3
mini gij

C2

⎞
⎠ = p

(20)

where (21) comes from the fact that ||u||∞||u||2 ≤ C. Thus
we can obtain a constant probability p by setting m1 =
O

(
2+∑n

j=1
3

mini gij
C2

ε2

)
. For any pair of vectors u and vi, the

random projections 1
L�u and 1

L�vi produce an estimate
ŵi that lies outside the tolerable approximation interval
with probability at most e−c2m2/12 where 0 < c < 1
is the some constant and L2 is the number of indepen-
dent random variableswi which lie outside of the tolerable
approximation interval with probability p. Setting m1 =
O

(
2+∑n

j=1
3

mini gij
C2

ε2

)
and m2 = O((1 + γ ) logn) obtain

p = 1/4, and pe = n−γ for some a constant γ > 0. Finally,
for m = m1m2 = O

(
(1+γ )

ε2

(
2 + ∑n

j=1
3

mini gij C
2
)
log n

)
,

the random projections � can preserve all pairwise inner
products within an approximation error ε with probability
at least 1 − n−γ .

Proposition 2 states that sparse random projections can
produce a data approximation with error comparable to
the best k-term approximation with high probability.

3.2 Optimal power allocation based sparsity adaption
From the above propositions, we notice that the factor∑n

j=1
1
gij controls the value of the estimation variance (15)

and the lower bound of the system delay m (18) as well.
If gij is a small value for node j at the time slot i, we
may have an estimation with a high variance producing
a low-accuracy approximation. Meanwhile, m should be
very large for guaranteeing an acceptable error probabil-
ity. An energy-aware sparsity is given as gj = Ej∑n

j=1 Ej
∗ m

n
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in EH-WSNs [14], where Ej denotes the harvested energy
profile for node j. Usually, gj is predetermined and uniform
regardless of nodes and time slots, i.e., gj = g. Obviously,
it is not a sophisticated definition because it does not con-
sider the different channel conditions of nodes and times
as well as the energy-harvesting constraints. Therefore, a
more specific definition on sparsity is desired.We redefine
the sparsity of random projections as follow,

gij = p∗
ij

Eij
(21)

where p∗
ij is the allocated energy for node j during the ith

time slot. p∗
ij is determined in term of full information

consisting of past and present and future channel condi-
tions and amount of energy harvested. The case of full
information may be justified if the environment is highly
predictable, e.g., the energy is harvested from the vibra-
tion of motors that turned on only during fixed operating
hours and line-of-sight is available for communications.
If the energy-harvesting profile Eij for each node is

known in advance and kept constant during all transmis-
sion time slots, the optimal sparsity problem is converted
into an optimal power allocation problem. But the rising
question is which performance measurement will be used
for power allocation. We know thta the performance of
random projection-based CS schemes is characterized by
two quantities, i.e., the data approximation error proba-
bility (or the mean square error (MSE)) and the system
delay. Note that there is often a tradeoff between these two
quantities [16]. Under an allowable MSE η > 0, we thus
define the achievable system delay D(η) as

D(η) = minm (22)
s.t.

E
{∥∥ŝ − s

∥∥} ≤ η (23)
m∑
i=1

log2

[
1 +

∣∣hij∣∣2 pij∑n
l=1,l 
=j |hil|2 Eil + σ 2

]
≥ B (24)

i∑
k=1

pkj ≤
i−1∑
k=1

Ekj, k = 1, 2, · · · ,m (25)

i∑
k=0

Ekj−
i∑

k=1
pkj≤Emax, k=1, 2, · · · ,m − 1. (26)

pij ≥ 0,∀i

where
∑m

i=1 log2
[
1 + |hij|2pij∑n

l=1,l 
=j|hil|2Eil+σ 2

]
is the lower

bound of short-term throughput of node j and B is the
required data information to transmit for each node. The
constraint (26) is due to that the harvested energy can-
not be consumed before its arrival, and the constraint (27)

is the limited battery capacity. The battery overflow hap-
pens when the reserved energy plus the harvested energy
exceeds the battery capacity, which, however, is not pre-
ferred because the data rate can be increased if the energy
is used in advance instead of overflowed. If we assume that
there is an m which satisfies the condition (24), the opti-
mal problem minimizing the system delay is immediately
converted into a throughput maximizing problem, which
can be formulated as follows:

maxpij
m∑
i=1

log2

[
1 +

∣∣hij∣∣2 pij∑n
l=1,l 
=j |hil|2 Eil + σ 2

]

s.t. (27)
i∑

k=1
pkj ≤

i−1∑
k=1

Ekj, k = 1, 2, · · · ,m (28)

i∑
k=0

Ekj−
i∑

k=1
pkj≤Emax, k = 1, 2, · · · ,m − 1. (29)

pij ≥ 0,∀i

Note that the objective (28) is convex for all i since
it is a sum of log functions, and others are all affine
constraints. Consequently, the optimization problem is a
convex optimization problem, and the optimal solution
satisfies the Karush-Kuhn-Tucker (KKT) conditions [17].
With the assumption that the initial battery energy E0j is
always known by node j, define the Lagrangian function
for any multipliers λi ≥ 0,μi ≥ 0,βi ≥ 0 as

L =
m∑
i=1

log2

[
1 +

∣∣hij∣∣2 pij∑n
l=1,l 
=j |hil|2 Eil + σ 2

]

−
m∑
i=1

λi

( i∑
k=1

pkj −
i−1∑
k=1

Ekj

)
(30)

−
m−1∑
i=1

μi

( i∑
k=0

Ekj −
i∑

k=1
pkj ≤ Emax

)
+

m∑
i=1

βipij

with additional complementary slackness conditions

λi

( i∑
k=1

pkj −
i−1∑
k=1

Ekj

)
= 0,∀i (31)

μi

( i∑
k=0

Ekj −
i∑

k=1
pkj ≤ Emax

)
= 0, i < m (32)

βipij = 0∀i (33)
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We apply the KKT optimality conditions to the
Lagrangian function (30). By setting ∂L/∂pij = 0, we
obtain the unique optimal energy level p∗

ij in term of
Lagrange multipliers as

p∗
ij =

[
αi − 1

γi

]∗
(34)

where αi = [
ln 2

∑m
k=i(λk − μk)βi

]−1, μm = 0 and γi =
|hij|2∑n

l=1,l 
=j|hil|2Eil
.

3.3 Structural solution
If the battery capacity is finite, the optimal water-level
is not monotonic. Therefore, the structure of the opti-
mal energy allocation cannot be described in a sim-
ple and clear way, and an online programming may be
required. Since we are more interested in an offline
power allocation structure, we study the following special
case.

Proposition 3. if Emax = ∞, the optimal water lev-
els are non-decreasing as αi ≤ αi+1. In addition, the
water level changes when all the energy harvested before
the current transmission are used up.
Proof: Without the battery capacity constraint, the water

level is given as αi = (
ln 2

∑m
k=i λk

)−1. Since λk ≥

0,∀k, we have αi ≤ αi+1. If αi ≤ αi+1, by defini-
tion αi = (

ln 2
∑m

k=i λk
)−1, we get λi 
= 0 and λi >

0. So the complementary slackness condition (32) only
holds when

(∑i
k=1 pkj −

∑i−1
k=1 Ekj

)
= 0, which means

all stored energy should be used up before the current
transmission.

The case of Emax = ∞ represents an ideal energy
buffer which refers to a device that can store any amount
of energy, does not have any inefficiency in charging,
and does not leak any energy over time. As an example,
consider a sensor node installed to monitor the health
of heavy duty industrial motors. Suppose the node oper-
ates using energy harvested from the machine’s vibra-
tions, the harvested energy is greater than the consumed
power and the health monitoring function is desired only
when the motor is powered on. Proposition 3 presents
an analytically tractable structure of the optimal spar-
sity. Intuitively, the harvested energy is reserved in the
battery for the use in the later transmission, in order
to reduce the effect of causality constraint and improve
the flexibility of harvested energy allocation. The opti-
mal water level can be obtained by the power allocation
policy and it is structured as follows: the water level
is non-decreasing and the harvested energy is used in
a conservative way. Based on the structural properties,
we can use the following reserve multi-stage waterfilling
algorithm modified based on [18], to achieve the
solution:
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Figure 1 The MSEs comparison for sparse random projections with different degrees of sparsity.
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Algorithm 1: Reserve multi-stage waterfilling
algorithm with harvested energy [18]

1: Set t0 = 0, γ̂i = γi and Êij = Eij for i = 1, . . . ,m
2: for all i = 1 tom do
3: for all k = m to ti−1 + 1 do
4: Find αl so that

∑k
l=ti−1+1 plj = ∑k−1

l=ti−1+1 Êlj
and plj =

[
αl − 1

γ̂l

]∗

5: Update γ̂l =
(
plj + 1

γ̂l

)−1

6: If
∑k−1

l=1 Êlj ≥ ∑k
l=1 plj, then ti = k

7: end for k
8: If ti = m then exit
9: end for i
10: p∗

ij =
[
1
γ̂i

− 1
γi

]∗
, i = 1, . . . ,m

4 Simulation results
We consider a EH-WSN containing n = 500 sensor nodes,
and a uniform energy-harvesting rate Eij = 2 dB for
all nodes. We evaluate the performance of the proposed
adaptive sparse random projections. One of performance
measurements is the mean-square error (MSE) given as

error =
∥∥s − ŝ

∥∥2
2

‖s‖22
(35)

Figure 1 illustrates the data approximation performance
using sparse random projections for the different degrees

of sparsity. The larger g is given, the smaller MSE is
achieved. However, a larger g may bring great computa-
tional complexity. Therefore, the sparsity factor g should
be carefully chosen in order to keep a balance between
the MSE and the complexity. Intuitively, when channel
conditions are not good, a larger g should be selected
for guaranteeing an acceptable MSE, whereas a smaller
g should be selected for saving the computational com-
plexity when channel conditions are good enough. This
motivates us to study adapting the sparsity of random pro-
jections according to channel conditions for improving
the data-approximation performance as well as the system
delay.
Figures 2 and 3 compare theMSE performance obtained

by our proposed adaptive sparse random projection
(denoted as ‘Adaptive’ in the legend) with that obtained by
the conventional sparse random projections (denoted as
‘Fixed’ in the legend) with respect to the number of trans-
mission slots m for SNR = 15 dB and 30 dB, respectively.
The conventional sparse random projections with a fixed
sparsity given as g = 1/4 is looked as a baseline since
it achieves an acceptable MSE with a modest complex-
ity. We observe that the proposed adaptive sparse random
projections achieves better tradeoff between the MSE and
the system delay than the conventional one does when k
is either 10 or 5. However, the performance gap between
the proposed scheme and the conventional one is getting
smaller when SNR increases. That makes sense because
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Figure 2 MSEs comparison for different k when SNR = 15 dB.
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Figure 3 MSEs comparison for different k when SNR = 30 dB.

when the channel conditions is getting better, the bene-
fits from the adaptive sparsity become limited. For both
SNR = 30 dB and 15 dB, we notice that the case of k = 5
provides better performance than the case of k = 10.
In Figure 4, we present the performance comparison

between the conventional sparse random projection with

a fixed sparsity and the proposed one with respect to the
number of transmission (or the system delay) m for dif-
ferent SNRs. We still observe that the proposed scheme
outperforms the conventional one for both SNR = 20 dB
and 30 dB resulting in a better tradeoff between the MSE
and the system delay. We also notice that, for both the
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Figure 4 MSEs comparison for different SNRs.
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Figure 5 Tradeoff between the MSE and the system delay for SNR = 30 dB and k = 5.

proposed scheme and the conventional scheme, there is
not a performance difference between the case of SNR
= 20 dB and that of SNR = 30 dB when m < 80, but
the MSE decreases as SNR increases when m is over 80.
That is because m is also one of factors which control
the variance of the estimation illustrated in (15). If m is
not sufficiently large, it is one of dominant factors which
effect the MSE performance. Therefore, increasing SNR
barely impacts the MSE performance. While m is large
enough, a very limited improvement of the MSE may be
achieved by further increasingm, but SNR now becomes a
dominant factor and increasing SNRmay benefit the MSE
performance.
Figure 5 shows tradeoffs between the system delay and

the MSE for the proposed adaptive sparse random projec-
tions and the conventional ones when SNR = 30 dB and
k = 5. Consider theMSE 3×10−2, the conventional sparse
random projection requires about m = 95 times trans-
mission, while the proposed scheme only requiresm = 78
times transmission. Consequently, the proposed scheme
achieves a better tradeoff compared to the conventional
one.

5 Conclusions
In this paper, we proposed to adapt sparsity of random
projections according to full channel information for EH-
WSNs. Compared to the conventional sparse random
projections which keep the sparsity constant for the
whole transmission slots, the proposed one achieves a

better tradeoff between the MSE and the system delay.
The optimal sparsity problem is turned into an opti-
mal power allocation maximizing throughput with the
energy-harvesting constraints. An offline power alloca-
tion structure is available for a special case that the battery
capacity is infinite. Simulation results have shown that
the proposed scheme achieves smaller MSEs than the
conventional scheme. Meanwhile, the proposed scheme
can also reduce the system delay given an accepted
error rate. However, full channel information may not be
always available. Therefore, for future work, we will study
adaptive sparse random projections with partial channel
information.
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