31 research outputs found
Differences in genome-wide gene expression response in peripheral blood mononuclear cells between young and old men upon caloric restriction
Background: Caloric restriction (CR) is considered to increase lifespan and to prevent various age-related diseases in different nonhuman organisms. Only a limited number of CR studies have been performed on humans, and results put CR as a beneficial tool to decrease risk factors in several age-related diseases. The question remains at what age CR should be implemented to be most effective with respect to healthy aging. The aim of our study was to elucidate the role of age in the transcriptional response to a completely controlled 30 % CR diet on immune cells, as immune response is affected during aging. Ten healthy young men, aged 20–28, and nine healthy old men, aged 64–85, were subjected to a 2-week weight maintenance diet, followed by 3 weeks of 30 % CR. Before and after 30 % CR, the whole genome gene expression in peripheral blood mononuclear cells (PBMCs) was assessed. Results: Expression of 554 genes showed a different response between young and old men upon CR. Gene set enrichment analysis revealed a downregulation of gene sets involved in the immune response in young but not in old men. At baseline, immune response-related genes were higher expressed in old compared to young men. Upstream regulator analyses revealed that most potential regulators were controlling the immune response. Conclusions: Based on the gene expression data, we theorise that a short period of CR is not effective in old men regarding immune-related pathways while it is effective in young men
Breast cancer in Ethiopia: evidence for geographic difference in the distribution of molecular subtypes in Africa
Severe autogenously fecal peritonitis in ageing Wistar rats. Response to intravenous meropenem
Repaired tetralogy of Fallot: the roles of cardiovascular magnetic resonance in evaluating pathophysiology and for pulmonary valve replacement decision support
Surgical management of tetralogy of Fallot (TOF) results in anatomic and functional abnormalities in the majority of patients. Although right ventricular volume load due to severe pulmonary regurgitation can be tolerated for many years, there is now evidence that the compensatory mechanisms of the right ventricular myocardium ultimately fail and that if the volume load is not eliminated or reduced by pulmonary valve replacement the dysfunction might be irreversible. Cardiovascular magnetic resonance (CMR) has evolved during the last 2 decades as the reference standard imaging modality to assess the anatomic and functional sequelae in patients with repaired TOF. This article reviews the pathophysiology of chronic right ventricular volume load after TOF repair and the risks and benefits of pulmonary valve replacement. The CMR techniques used to comprehensively evaluate the patient with repaired TOF are reviewed and the role of CMR in supporting clinical decisions regarding pulmonary valve replacement is discussed
Targeting calcium cycling proteins in heart failure through gene transfer
Our understanding of cardiac excitation-contraction coupling has improved significantly over the last 10 years. Furthermore, defects in the various steps of excitation-contraction coupling that characterize cardiac dysfunction have been identified in human and experimental models of heart failure. The various abnormalities in ionic channels, transporters, kinases and various signalling pathways collectively contribute to the ‘failing phenotype.’ However, deciphering the causative changes continues to be a challenge. An important tool in dissecting the importance of the various changes in heart failure has been the use of cardiac gene transfer. To achieve effective cardiac gene transfer a number of obstacles remain, including appropriate vectors for gene delivery, appropriate delivery systems, and a better understanding of the biology of the disease. In this review, we will examine our current understanding of these various factors. Gene transfer provides not only a potential therapeutic modality but also an approach to identifying and validating molecular targets
