3,233 research outputs found

    Working memory and high-level cognition in children: An analysis of timing and accuracy in complex span tasks

    Get PDF
    This study examined working memory (WM) using complex span tasks (CSTs) to improve theoretical understanding of the relationship between WM and high-level cognition (HLC) in children. Ninety-two children aged between seven and eight years were tested on three computer-paced CSTs and measures of non-verbal reasoning, reading and mathematics. Processing times in the CSTs were restricted based on individually titrated processing speeds, and performance was compared to participant-led tasks with no time restrictions. Storage, processing accuracy, and both processing and recall times within the CSTs were used as performance indices to understand the effects of time restrictions at a granular level. Restricting processing times did not impair storage, challenging models that argue for a role of maintenance in WM. A task-switching account best explained the effect of time restrictions on performance indices and their inter-relationships. Principal component analysis showed that a single factor with all performance indices from just one CST (Counting span) was the best predictor of HLC. Storage in both the participant-led and computer-paced versions of this task explained unique and shared variance in HLC. However, the latter accounted for more variance in HLC when contributions from processing time were included in the model. Processing time in this condition also explained variance above and beyond storage. This suggests that faster processing is important to keep information active in WM; however, this is only evident when time restrictions are placed on the task and important when WM performance is applied in broader contexts that rely on this resource

    Children’s Verbal, Visual and Spatial Processing and Storage Abilities: An Analysis of Verbal Comprehension, Reading, Counting and Mathematics

    Get PDF
    The importance of working memory (WM) in reading and mathematics performance has been widely studied, with recent research examining the components of WM (i.e., storage and processing) and their roles in these educational outcomes. However, the differing relationships between these abilities and the foundational skills involved in the development of reading and mathematics have received less attention. Additionally, the separation of verbal, visual and spatial storage and processing and subsequent links with foundational skills and downstream reading and mathematics has not been widely examined. The current study investigated the separate contributions of processing and storage from verbal, visual and spatial tasks to reading and mathematics, whilst considering influences on the underlying skills of verbal comprehension and counting, respectively. Ninety-two children aged 7- to 8-years were assessed. It was found that verbal comprehension (with some caveats) was predicted by verbal storage and reading was predicted by verbal and spatial storage. Counting was predicted by visual processing and storage, whilst mathematics was related to verbal and spatial storage. We argue that resources for tasks relying on external representations of stimuli related mainly to storage, and were largely verbal and spatial in nature. When a task required internal representation, there was a draw on visual processing and storage abilities. Findings suggest a possible meaningful separability of types of processing. Further investigation of this could lead to the development of an enhanced WM model, which might better inform interventions and reasonable adjustments for children who struggle with reading and mathematics due to WM deficits

    Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors

    Full text link
    While single measurement vector (SMV) models have been widely studied in signal processing, there is a surging interest in addressing the multiple measurement vectors (MMV) problem. In the MMV setting, more than one measurement vector is available and the multiple signals to be recovered share some commonalities such as a common support. Applications in which MMV is a naturally occurring phenomenon include online streaming, medical imaging, and video recovery. This work presents a stochastic iterative algorithm for the support recovery of jointly sparse corrupted MMV. We present a variant of the Sparse Randomized Kaczmarz algorithm for corrupted MMV and compare our proposed method with an existing Kaczmarz type algorithm for MMV problems. We also showcase the usefulness of our approach in the online (streaming) setting and provide empirical evidence that suggests the robustness of the proposed method to the distribution of the corruption and the number of corruptions occurring.Comment: 13 pages, 6 figure

    Executive Function and Academic Achievement in Primary School Children: The Use of Task-Related Processing Speed

    Get PDF
    This article argues that individual differences in processing speed are important in the relationship between executive function (EF) and academic achievement in primary school children. It proposes that processing times within EF tasks can be used to predict academic attainment and aid in the development of intervention programmes

    Cavalier King Charles Spaniels with Chiari-like malformation and Syringomyelia have increased variability of spatio-temporal gait characteristics

    Get PDF
    Abstract Background Chiari-like malformation in the Cavalier King Charles Spaniel is a herniation of the cerebellum and brainstem into or through the foramen magnum. This condition predisposes to Syringomyelia; fluid filled syrinxes within the spinal cord. The resulting pathology in spinal cord and cerebellum create neuropathic pain and changes in gait. This study aims to quantify the changes in gait for Cavalier King Charles Spaniel with Chiari-like malformation and Syringomyelia. Methods We compared Cavalier King Charles Spaniel with Chiari-like malformation with (n = 9) and without (n = 8) Syringomyelia to Border Terriers (n = 8). Two video cameras and manual tracking was used to quantify gait parameters. Results and conclusions We found a significant increase in coefficient of variation for the spatio-temporal characteristics and ipsilateral distance between paws and a wider base of support in the thoracic limbs but not in the pelvic limbs for Cavalier King Charles Spaniels compared with the border terrier

    Unexpected features of branched flow through high-mobility two-dimensional electron gases

    Full text link
    GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable electronic states, and serve as the basis for fast transistors, research on electrons in nanostructures, and prototypes of quantum-computing schemes. All these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with low-temperature mean free paths ranging from microns to hundreds of microns. Here we study how disorder affects the spatial structure of electron transport by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities range over an order of magnitude. As expected, electrons flow along narrow branches that we find remain straight over a distance roughly proportional to the mean free path. We also observe two unanticipated phenomena in high-mobility samples. In our highest-mobility sample we observe an almost complete absence of sharp impurity or defect scattering, indicated by the complete suppression of quantum coherent interference fringes. Also, branched flow through the chaotic potential of a high-mobility sample remains stable to significant changes to the initial conditions of injected electrons.Comment: 22 pages, 4 figures, 1 tabl

    TGF-b2 induction regulates invasiveness of theileria-transformed leukocytes and disease susceptibility

    Get PDF
    Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence

    Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression

    Get PDF
    Tumor-associated macrophages (TAMs) are a highly plastic stromal cell type that support cancer progression. Using single-cell RNA sequencing of TAMs from a spontaneous murine model of mammary adenocarcinoma (MMTV-PyMT), we characterize a subset of these cells expressing lymphatic vessel endothelial hyaluronic acid receptor 1 (Lyve-1) that spatially reside proximal to blood vasculature. We demonstrate that Lyve-1+ TAMs support tumor growth and identify a pivotal role for these cells in maintaining a population of perivascular mesenchymal cells that express α-smooth muscle actin and phenotypically resemble pericytes. Using photolabeling techniques, we show that mesenchymal cells maintain their prevalence in the growing tumor through proliferation and uncover a role for Lyve-1+ TAMs in orchestrating a selective platelet-derived growth factor–CC–dependent expansion of the perivascular mesenchymal population, creating a proangiogenic niche. This study highlights the inter-reliance of the immune and nonimmune stromal network that supports cancer progression and provides therapeutic opportunities for tackling the disease
    • …
    corecore