34 research outputs found

    Geographic origin of the Y Chromosomes in “old” inbred strains of mice

    Full text link
    Six distinct Y Chromosomes (Chr) were identified among 39 standard inbred strains of mice with five probes that identified Y Chr-specific restriction fragments on Southern blots. Three Y Chr types, distributed among 31 strains, were of Asian Mus musculus origin. The remaining three Y Chr types, distributed among eight strains, were of M. domesticus origin. The Asian source of the M. musculus Y Chr was confirmed by determining the DNA sequence of 221 bp from an open reading frame within the Sry (sex determining region Y) gene (Gubbay et al., Nature 346 245–250, 1990) in three inbred strains (C57BL/6J, AKR/J, and SWR/J) and comparing the sequence to the homologous sequences derived from wild caught European and Asian M. musculus males. These data indicate that a minimum of six male mice contributed to the formation of the old inbred strains.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46993/1/335_2004_Article_BF00292153.pd

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
    corecore