41 research outputs found

    Ecological effects of extreme drought on Californian herbaceous plant communities

    Full text link
    Understanding the consequences of extreme climatic events is a growing challenge in ecology. Climatic extremes may differentially affect varying elements of biodiversity, and may not always produce ecological effects exceeding those of "normal" climatic variation in space and time. We asked how the extreme drought years of 2013- 2014 affected the cover, species richness, functional trait means, functional diversity, and phylogenetic diversity of herbaceous plant communities across the California Floristic Province. We compared the directions and magnitudes of these drought effects with expectations from four "pre-drought" studies of variation in water availability: (1) a watering experiment, (2) a long- Term (15-yr) monitoring of interannual variability, (3) a resampling of historic (57-yr- old) plots within a warming and drying region, and (4) natural variation in communities over a broad geographic gradient in precipitation. We found that the drought was associated with consistent reductions in species richness and cover, especially for annual forbs and exotic annual grasses, but not with changes in functional or phylogenetic diversity. Except for total cover and cover of exotic annual grasses, most drought effects did not exceed quantitative expectations based on the four pre-drought studies. Qualitatively, plant community responses to the drought were most concordant with responses to pre-drought interannual rainfall variability in the 15-yr monitoring study, and least concordant with responses to the geographic gradient in precipitation. Our results suggest that, at least in the short term, extreme drought may cause only a subset of community metrics to respond in ways that exceed normal background variability

    Matrix composition mediates effects of habitat fragmentation: a modelling study

    Get PDF
    Context Habitat loss has clear negative effects on biodiversity, but whether fragmentation per se (FPS), excluding habitat loss does is debatable. A contribution to this debate may be that many fragmentation studies tend to use landscapes of fragmented focal-habitat and a single vastly different species-poor intervening land cover (the matrix). Objectives How does matrix composition influence the effect of FPS on biodiversity?. Methods Using an individual-based model to investigate the effect of different configurations of the matrix on the relationship between FPS and biodiversity of the focal-habitat. We manipulated the number and quality of land cover types in the matrix, and their similarity to the focal-habitat. Results Extremely different matrix, caused an order of magnitude stronger effect of FPS on alpha- and gamma-diversity and beta-diversity to decline. Low FPS led to high gamma-diversity. Increasing FPS caused a dramatic decline to low diversity. In contrast landscapes with a more similar matrix had lower diversity under low FPS declining little with increasing FPS. Having few matrix types caused beta-diversity to decline in general compared to landscapes with a larger numbers. Conclusions The effects of FPS on biodiversity may change depending on the number of matrix types and their similarity to the focal-habitat. We recommend that fragmentation studies should consider a greater variety of landscapes to help assess in which cases FPS does not have a negative impact and allow better predictions of the impacts of fragmentation. We show the importance of having a diversity of matrix land cover types and improving the hospitability of the matrix for species dependent on the focal-habitat
    corecore