26 research outputs found

    Multiwavelength View of the M87 Black Hole Captured by the Event Horizon Telescope

    Get PDF
    In 2017, the first image of the center of the M87 galaxy was captured by the Event Horizon Telescope (EHT). It revealed a ring morphology and a size consistent with theoretical expectations for the light pattern around a weakly accreting supermassive black hole of ~6.5 billion solar masses. In parallel to the EHT measurements, an extensive multi-wavelength (MWL) campaign with ground- and space-based facilities from radio all the way up to the TeV energy range was organized. In this note we will give an overview of the results from this campaign. M87 was found to be in a historically low state. At X-ray energies the emission from the core dominates over HST-1. We present the most complete simultaneous, MWL spectrum of the active nucleus to date

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    Very-long-baseline interferometry (VLBI) observations of active galactic nuclei at millimetre wavelengths have the power to reveal the launching and initial collimation region of extragalactic radio jets, down to 10-100 gravitational radii (rg = GM/c2) scales in nearby sources. Centaurus A is the closest radio-loud source to Earth. It bridges the gap in mass and accretion rate between the supermassive black holes (SMBHs) in Messier 87 and our Galactic Centre. A large southern declination of −43deg has, however, prevented VLBI imaging of Centaurus A below a wavelength of 1 cm thus far. Here we show the millimetre VLBI image of the source, which we obtained with the Event Horizon Telescope at 228 GHz. Compared with previous observations, we image the jet of Centaurus A at a tenfold higher frequency and sixteen times sharper resolution and thereby probe sub-lightday structures. We reveal a highly collimated, asymmetrically edge-brightened jet as well as the fainter counterjet. We find that the source structure of Centaurus A resembles the jet in Messier 87 on ~500 rg scales remarkably well. Furthermore, we identify the location of Centaurus A's SMBH with respect to its resolved jet core at a wavelength of 1.3 mm and conclude that the source's event horizon shadow4 should be visible at terahertz frequencies. This location further supports the universal scale invariance of black holes over a wide range of masses

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole

    No full text
    The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole

    Get PDF
    All authors: Psaltis, Dimitrios; Medeiros, Lia; Christian, Pierre; Özel, Feryal; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Asada, Keiichi; Azulay, Rebecca; Ball, David; Baloković, Mislav; Barrett, John; Bintley, Dan; Blackburn, Lindy; Boland, Wilfred; Bower, Geoffrey C.; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Cho, Ilje; Conway, John E.; Cordes, James M.; Crew, Geoffrey B.; Cui, Yuzhu; Davelaar, Jordy; De Laurentis, Mariafelicia; Deane, Roger; Dempsey, Jessica; Desvignes, Gregory; Dexter, Jason; Eatough, Ralph P.; Falcke, Heino; Fish, Vincent L.; Fomalont, Ed; Fraga-Encinas, Raquel; Friberg, Per; Fromm, Christian M.; Gammie, Charles F.; García, Roberto; Gentaz, Olivier; Goddi, Ciriaco; Gómez, José L.; Gu, Minfeng; Gurwell, Mark; Hada, Kazuhiro; Hesper, Ronald; Ho, Luis C.; Ho, Paul; Honma, Mareki; Huang, Chih-Wei L.; Huang, Lei; Hughes, David H.; Inoue, Makoto; Issaoun, Sara; James, David J.; Jannuzi, Buell T.; Janssen, Michael; Jiang, Wu; Jimenez-Rosales, Alejandra; Johnson, Michael D.; Jorstad, Svetlana; Jung, Taehyun; Karami, Mansour; Karuppusamy, Ramesh; Kawashima, Tomohisa; Keating, Garrett K.; Kettenis, Mark; Kim, Jae-Young; Kim, Junhan; Kim, Jongsoo; Kino, Motoki; Koay, Jun Yi; Koch, Patrick M.; Koyama, Shoko; Kramer, Michael; Kramer, Carsten; Krichbaum, Thomas P.; Kuo, Cheng-Yu; Lauer, Tod R.; Lee, Sang-Sung; Li, Yan-Rong; Li, Zhiyuan; Lindqvist, Michael; Lico, Rocco; Liu, Jun; Liu, Kuo; Liuzzo, Elisabetta; Lo, Wen-Ping; Lobanov, Andrei P.; Lonsdale, Colin; Lu, Ru-Sen; Mao, Jirong; Markoff, Sera; Marrone, Daniel P.; Marscher, Alan P.; Martí-Vidal, Iván; Matsushita, Satoki; Mizuno, Yosuke; Mizuno, Izumi; Moran, James M.; Moriyama, Kotaro; Moscibrodzka, Monika; Müller, Cornelia; Musoke, Gibwa; Mus Mejías, Alejandro; Nagai, Hiroshi; Nagar, Neil M.; Narayan, Ramesh; Narayanan, Gopal; Natarajan, Iniyan; Neri, Roberto; Noutsos, Aristeidis; Okino, Hiroki; Olivares, Héctor; Oyama, Tomoaki; Palumbo, Daniel C. M.; Park, Jongho; Patel, Nimesh; Pen, Ue-Li; Piétu, Vincent; Plambeck, Richard; PopStefanija, Aleksandar; Prather, Ben; Preciado-López, Jorge A.; Ramakrishnan, Venkatessh; Rao, Ramprasad; Rawlings, Mark G.; Raymond, Alexander W.; Ripperda, Bart; Roelofs, Freek; Rogers, Alan; Ros, Eduardo; Rose, Mel; Roshanineshat, Arash; Rottmann, Helge; Roy, Alan L.; Ruszczyk, Chet; Ryan, Benjamin R.; Rygl, Kazi L. J.; Sánchez, Salvador; Sánchez-Arguelles, David; Sasada, Mahito; Savolainen, Tuomas; Schloerb, F. Peter; Schuster, Karl-Friedrich; Shao, Lijing; Shen, Zhiqiang; Small, Des; Sohn, Bong Won; SooHoo, Jason; Tazaki, Fumie; Tilanus, Remo P. J.; Titus, Michael; Torne, Pablo; Trent, Tyler; Traianou, Efthalia; Trippe, Sascha; van Bemmel, Ilse; van Langevelde, Huib Jan; van Rossum, Daniel R.; Wagner, Jan; Wardle, John; Ward-Thompson, Derek; Weintroub, Jonathan; Wex, Norbert; Wharton, Robert; Wielgus, Maciek; Wong, George N.; Wu, Qingwen; Yoon, Doosoo; Young, André; Young, Ken; Younsi, Ziri; Yuan, Feng; Yuan, Ye-Fei; Zhao, Shan-Shan; EHT CollaborationThe 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources. © 2020 American Physical Society.The authors of the present paper thank the following organizations and programs: the Academy of Finland (Projects No. 274477, No. 284495, No. 312496); the Advanced European Network of E-infrastructures for Astronomy with the SKA (AENEAS) project, supported by the European Commission Framework Programme Horizon 2020 Research and Innovation action under Grant Agreement No. 731016; the Alexander von Humboldt Stiftung; the Black Hole Initiative at Harvard University, through a grant (No. 60477) from the John Templeton Foundation; the China Scholarship Council; Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT, Chile, via PIA ACT172033, Fondecyt Projects No. 1171506 and No. 3190878, BASAL AFB-170002, ALMA-conicyt 31140007); Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico, Projects No. 104497, No. 275201, No. 279006, No. 281692); the Delaney Family via the Delaney Family John A. Wheeler Chair at Perimeter Institute; Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (DGAPA-UNAM, project IN112417); the European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (Grant No. 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and GenT Program (project CIDEGENT/2018/021); the Gordon and Betty Moore Foundation (Grants No. GBMF-3561, No. GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; the Jansky Fellowship program of the National Radio Astronomy Observatory (NRAO); the Japanese Government (Monbukagakusho:MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, Grants No. QYZDJ-SSW-SLH057, No. QYZDJSSW-SYS008, No. ZDBS-LY-SLH011); the Leverhulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (Grants No. 18KK0090, No. JP18K13594, No. JP18K03656, No. JP18H03721, No. 18K03709, No. 18H01245, No. 25120007); the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112-M-001-025-MY3, 106-2112-M-001-011, 106-2119-M-001-027, 107-2119-M-001-017, 107-2119-M-001-020, and 107-2119-M-110-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator Grant No. 80NSSC17K0649 and Hubble Fellowship Grant No. HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract No. NAS5-26555); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (Grants No. 2016YFA0400704, No. 2016YFA0400702); the National Science Foundation (NSF, Grants No. AST-0096454, No. AST-0352953, No. AST-0521233, No. AST-0705062, No. AST0905844, No. AST-0922984, No. AST-1126433, No. AST-1140030, No. DGE-1144085, No. AST-1207704, No. AST-1207730, No. AST-1207752, No. MRI-1228509, No. OPP-1248097, No. AST-1310896, No. AST-1312651, No. AST-1337663, No. AST-1440254, No. AST-1555365, No. AST-1715061, No. AST-1615796, No. AST-1716327, No. OISE-1743747, No. AST-1816420); the Natural Science Foundation of China (Grants No. 11573051, No. 11633006, No. 11650110427, No. 10625314, No. 11721303, No. 11725312, No. 11933007); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Youth Thousand Talents Program of China; the National Research Foundation of Korea (the Global PhD Fellowship Grant: Grants No. NRF-2015H1A2A1033752, No. 2015-R1D1A1A01056807, the Korea Research Fellowship Program: NRF-2015H1D3A1066561); the Netherlands Organization for Scientific Research (NWO) VICI award (Grant No. 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Technology (DST) of South Africa; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under Grant No. 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Russian Science Foundation (Grant No. 17-12-01029); the Spanish Ministerio de Economia y Competitividad (Grants No. AYA2015-63939-C2-1-P, No. AYA2016-80889-P, No. PID2019-108995GB-C21); the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofisica de Andalucia (SEV-2017-0709); the Toray Science Foundation; the Consejeria de Economia, Conocimiento, Empresas y Universidad of the Junta de Andalucia (Grant No. P18-FR-1769), the Consejo Superior de Investigaciones Cientificas (Grant No. 2019AEP112); the U.S. Department of Energy (DOE) through the Los Alamos National Laboratory [operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE (Contract No. 89233218CNA000001)]; the Italian Ministero dell'Istruzione, dell'Universita e della Ricerca through the grant Progetti Premiali 2012-iALMA (CUP C52I13000140001); the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 730562 RadioNet; ALMA North America Development Fund; the Academia Sinica;Chandra TM6-17006X; the GenT Program (Generalitat Valenciana) Project CIDEGENT/2018/021. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF Grant No. ACI-1548562, and CyVerse, supported by NSF Grants No. DBI-0735191, No. DBI-1265383, and No. DBI-1743442. We thank the staff at the participating observatories, correlation centers, and institutions for their enthusiastic support. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astrophysics (ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facility Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astrofisica, Optica, y Electronica (Mexico) and the University of Massachusetts at Amherst (USA). The IRAM 30-m telescope on Pico Veleta, Spain, is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max-PlanckGesellschaft, Germany) and IGN (Instituto Geografico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. The SPT is supported by the National Science Foundation through Grant No. PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant No. PHY1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation Grant No. GBMF 947. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with hydrogen masers. This research has made use of NASA's Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DiFX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    No full text
    Full list of authors: Kocherlakota, Prashant; Rezzolla, Luciano; Falcke, Heino; Fromm, Christian M.; Kramer, Michael; Mizuno, Yosuke; Nathanail, Antonios; Olivares, Héctor; Younsi, Ziri; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Algaba, Juan Carlos; Anantua, Richard; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David; Baloković, Mislav; Barrett, John; Benson, Bradford A.; Bintley, Dan; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Dominique; Bronzwaer, Thomas; Byun, Do-Young; Carlstrom, John E.; Chael, Andrew; Chan, Chi-kwan; Chatterjee, Shami; Chatterjee, Koushik; Chen, Ming-Tang; Chen, Yongjun; Chesler, Paul M.; Cho, Ilje; Christian, Pierre; Conway, John E.; Cordes, James M.; Crawford, Thomas M.; Crew, Geoffrey B.; Cruz-Osorio, Alejandro; Cui, Yuzhu; Davelaar, Jordy; De Laurentis, Mariafelicia; Deane, Roger; Dempsey, Jessica; Desvignes, Gregory; Doeleman, Sheperd S.; Eatough, Ralph P.; Farah, Joseph; Fish, Vincent L.; Fomalont, Ed; Fraga-Encinas, Raquel; Friberg, Per; Ford, H. Alyson; Fuentes, Antonio; Galison, Peter; Gammie, Charles F.; García, Roberto; Gentaz, Olivier; Georgiev, Boris; Goddi, Ciriaco; Gold, Roman; Gómez, José L.; Gómez-Ruiz, Arturo I.; Gu, Minfeng; Gurwell, Mark; Hada, Kazuhiro; Haggard, Daryl; Hecht, Michael H.; Hesper, Ronald; Ho, Luis C.; Ho, Paul; Honma, Mareki; Huang, Chih-Wei L.; Huang, Lei; Hughes, David H.; Ikeda, Shiro; Inoue, Makoto; Issaoun, Sara; James, David J.; Jannuzi, Buell T.; Janssen, Michael; Jeter, Britton; Jiang, Wu; Jimenez-Rosales, Alejandra; Johnson, Michael D.; Jorstad, Svetlana; Jung, Taehyun; Karami, Mansour; Karuppusamy, Ramesh; Kawashima, Tomohisa; Keating, Garrett K.; Kettenis, Mark; Kim, Dong-Jin; Kim, Jae-Young; Kim, Jongsoo; Kim, Junhan; Kino, Motoki; Koay, Jun Yi; Kofuji, Yutaro; Koch, Patrick M.; Koyama, Shoko; Kramer, Carsten; Krichbaum, Thomas P.; Kuo, Cheng-Yu; Lauer, Tod R.; Lee, Sang-Sung; Levis, Aviad; Li, Yan-Rong; Li, Zhiyuan; Lindqvist, Michael; Lico, Rocco; Lindahl, Greg; Liu, Jun; Liu, Kuo; Liuzzo, Elisabetta; Lo, Wen-Ping; Lobanov, Andrei P.; Loinard, Laurent; Lonsdale, Colin; Lu, Ru-Sen; MacDonald, Nicholas R.; Mao, Jirong; Marchili, Nicola; Markoff, Sera; Marrone, Daniel P.; Marscher, Alan P.; Martí-Vidal, Iván; Matsushita, Satoki; Matthews, Lynn D.; Medeiros, Lia; Menten, Karl M.; Mizuno, Izumi; Moran, James M.; Moriyama, Kotaro; Moscibrodzka, Monika; Müller, Cornelia; Musoke, Gibwa; Mejías, Alejandro Mus; Nagai, Hiroshi; Nagar, Neil M.; Nakamura, Masanori; Narayan, Ramesh; Narayanan, Gopal; Natarajan, Iniyan; Neilsen, Joseph; Neri, Roberto; Ni, Chunchong; Noutsos, Aristeidis; Nowak, Michael A.; Okino, Hiroki; Ortiz-León, Gisela N.; Oyama, Tomoaki; Özel, Feryal; Palumbo, Daniel C. M.; Park, Jongho; Patel, Nimesh; Pen, Ue-Li; Pesce, Dominic W.; Piétu, Vincent; Plambeck, Richard; PopStefanija, Aleksandar; Porth, Oliver; Pötzl, Felix M.; Prather, Ben; Preciado-López, Jorge A.; Psaltis, Dimitrios; Pu, Hung-Yi; Ramakrishnan, Venkatessh; Rao, Ramprasad; Rawlings, Mark G.; Raymond, Alexander W.; Ricarte, Angelo; Ripperda, Bart; Roelofs, Freek; Rogers, Alan; Ros, Eduardo; Rose, Mel; Roshanineshat, Arash; Rottmann, Helge; Roy, Alan L.; Ruszczyk, Chet; Rygl, Kazi L. J.; Sánchez, Salvador; Sánchez-Arguelles, David; Sasada, Mahito; Savolainen, Tuomas; Schloerb, F. Peter; Schuster, Karl-Friedrich; Shao, Lijing; Shen, Zhiqiang; Small, Des; Sohn, Bong Won; SooHoo, Jason; Sun, He; Tazaki, Fumie; Tetarenko, Alexandra J.; Tiede, Paul; Tilanus, Remo P. J.; Titus, Michael; Toma, Kenji; Torne, Pablo; Trent, Tyler; Traianou, Efthalia; Trippe, Sascha; van Bemmel, Ilse; van Langevelde, Huib Jan; van Rossum, Daniel R.; Wagner, Jan; Ward-Thompson, Derek; Wardle, John; Weintroub, Jonathan; Wex, Norbert; Wharton, Robert; Wielgus, Maciek; Wong, George N.; Wu, Qingwen; Yoon, Doosoo; Young, André; Young, Ken; Yuan, Feng; Yuan, Ye-Fei; Zensus, J. Anton; Zhao, Guang-Yao; Zhao, Shan-Shan; EHT Collaboration.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes. © 2021 authors.Support comes the ERC Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (Grant No. 610058). During the completion of this work we have become aware of a related work by S. Volkel et al. [98], which deals with topics that partly overlap with those of this manuscript (i.e., EHT tests of the strong-field regime of GR). The authors of the present paper thank the following organizations and programs: the Academy of Finland (projects No. 274477, No. 284495, No. 312496, No. 315721); the Alexander von Humboldt Stiftung; Agencia Nacional de Investigacion y Desarrollo (ANID), Chile via NCN19\_058 (TITANs), and Fondecyt 3190878; an Alfred P. Sloan Research Fellowship; Allegro, the European ALMA Regional Centre node in the Netherlands, the NL astronomy research network NOVA and the astronomy institutes of the University of Amsterdam, Leiden University and Radboud University; the Black Hole Initiative at Harvard University, through a grant (60477) from the John Templeton Foundation; the China Scholarship Council; Consejo Nacional de Ciencia y Tecnologia (CONACYT, Mexico, projects No. U0004246083, No. U0004-259839, No. F0003-272050, No. M0037-279006, No. F0003-281692, No. 104497, No. 275201, No. 263356); the Delaney Family via the Delaney Family John A.Wheeler Chair at Perimeter Institute; Direccion General de Asuntos del Personal Académico-Universidad Nacional Autonomade México (DGAPA-UNAM, projects No. IN112417 and No. IN112820); the EACOA Fellowship of the East Asia Core Observatories Association; the European Research Council Synergy Grant "BlackHoleCam: Imaging the Event Horizon of Black Holes" (Grant No. 610058); the Generalitat Valenciana postdoctoral grant APOSTD/2018/177 and GenT Program (project No. CIDEGENT/2018/021); MICINN Research Project No. PID2019-108995GB-C22; the Gordon and Betty Moore Foundation (Grants No. GBMF-3561, No. GBMF-5278); the Istituto Nazionale di Fisica Nucleare (INFN) sezione di Napoli, iniziative specifiche TEONGRAV; the International Max Planck Research School for Astronomy and Astrophysics at the Universities of Bonn and Cologne; Joint Princeton/Flatiron and Joint Columbia/Flatiron Postdoctoral Fellowships, research at the Flatiron Institute is supported by the Simons Foundation; the Japanese Government (Monbukagakusho: MEXT) Scholarship; the Japan Society for the Promotion of Science (JSPS) Grant-inAid for JSPS Research Fellowship (JP17J08829); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS, grants No. QYZDJ-SSW-SLH057, No. QYZDJSSW-SYS008, No. ZDBS-LY-SLH011); the Lever-hulme Trust Early Career Research Fellowship; the Max-Planck-Gesellschaft (MPG); the Max Planck Partner Group of the MPG and the CAS; the MEXT/JSPS KAKENHI (Grants No. 18KK0090, No. JP18K13594, No. JP18K03656, No. JP18H03721, No. 18K03709, No. 18H01245, No. 25120007); the Malaysian Fundamental Research Grant Scheme (FRGS) FRGS/1/2019/STG02/UM/02/6; the MIT International Science and Technology Initiatives (MISTI) Funds; the Ministry of Science and Technology (MOST) of Taiwan (105-2112M-001-025-MY3, 106-2112-M-001-011, 106-2119-M001-027, 107-2119-M-001-017, 107-2119-M-001-020, 107-2119-M-110-005,108-2112-M-001-048, and 1092124-M-001-005); the National Aeronautics and Space Administration (NASA, Fermi Guest Investigator grant 80NSSC20K1567 and 80NSSC20K1567, NASA Astrophysics Theory Program Grant No. 80NSSC20K0527, NASA NuSTAR Award No. 80NSSC20K0645, NASA Grant No. NNX17AL82G, and Hubble Fellowship Grant No. HST-HF2-51431.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555); the National Institute of Natural Sciences (NINS) of Japan; the National Key Research and Development Program of China (Grants No. 2016YFA0400704, No. 2016YFA0400702); the National Science Foundation (NSF, Grants No. AST0096454, No. AST-0352953, No. AST-0521233, No. AST-0705062, No. AST-0905844, No. AST0922984, No. AST-1126433, No. AST-1140030, No. DGE-1144085, No. AST-1207704, No. AST1207730, No. AST-1207752, No. MRI-1228509, No. OPP-1248097, No. AST-1310896, No. AST1337663, No. AST-1440254, No. AST-1555365, No. AST-1615796, No. AST-1715061, No. AST1716327, No. AST-1716536, No. OISE-1743747, No. AST-1816420, No. AST-1903847, No. AST1935980, No. AST-2034306); the Natural Science Foundation of China (Grants No. 11573051, No. 11633006, No. 11650110427, No. 10625314, No. 11721303, No. 11725312, No. 11933007, No. 11991052, No. 11991053); a fellowship of China Postdoctoral Science Foundation (2020M671266); the Natural Sciences and Engineering Research Council of Canada (NSERC, including a Discovery Grant and the NSERC Alexander Graham Bell Canada Graduate Scholarships-Doctoral Program); the National Research Foundation of Korea (the Global PhD Fellowship Grant: grants No. 2014H1A2A1018695, No. NRF2015H1A2A1033752, No. 2015-R1D1A1A01056807, the Korea Research Fellowship Program: NRF2015H1D3A1066561, Basic Research Support Grant No. 2019R1F1A1059721); the Netherlands Organization for Scientific Research (NWO) VICI award (Grant No. 639.043.513) and Spinoza Prize SPI 78-409; the New Scientific Frontiers with Precision Radio Interferometry Fellowship awarded by the South African Radio Astronomy Observatory (SARAO), which is a facility of the National Research Foundation (NRF), an agency of the Department of Science and Innovation (DSI) of South Africa; the South African Research Chairs Initiative of the Department of Science and Innovation and National Research Foundation; the Onsala Space Observatory (OSO) national infrastructure, for the provisioning of its facilities/observational support (OSO receives funding through the Swedish Research Council under Grant No. 2017-00648) the Perimeter Institute for Theoretical Physics (research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, Innovation and Science); the Spanish Ministerio de Ciencia e Innovacion (grants No. PGC2018-098915-B-C21, No. AYA2016-80889-P; No. PID2019-108995GB-C21, No. PGC2018-098915-BC21); the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award for the Instituto de Astrofisica de Andalucia (SEV-20170709); the Toray Science Foundation; the Consejeria de Economia, Conocimiento, Empresas y Universidad, Junta de Andalucia (Grant No. P18-FR-1769), the Consejo Superior de Investigaciones Cientificas (Grant No. 2019AEP112); the U.S. Department of Energy (USDOE) through the Los Alamos National Laboratory (operated by Triad National Security, LLC, for the National Nuclear Security Administration of the USDOE (Contract No. 89233218CNA000001); the European Union's Horizon 2020 research and innovation program under grant agreement No.730562 RadioNet; ALMA North America Development Fund; the Academia Sinica; Chandra TM617006X; Chandra award DD7-18089X. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF grant ACI-1548562, and CyVerse, supported by NSF Grants No. DBI-0735191, No. DBI-1265383, and No. DBI-1743442. XSEDE Stampede2 resource at TACC was allocated through TG-AST170024 and TG-AST080026N. XSEDE Jet-Stream resource at PTI and TACC was allocated through AST170028. The simulations were performed in part on the SuperMUC cluster at the LRZ in Garching, on the LOEWE cluster in CSC in Frankfurt, and on the HazelHen cluster at the HLRS inStuttgart. This research was enabled in part by support provided by Compute Ontario [99], Calcul Quebec [100] and Compute Canada [101]. We thank the staff at the participating observatories, correlation centers, and institutions for their enthusiastic support. This paper makes use of the following ALMA data: ADS/JAO.ALMA\#2016.1.01154.V. ALMA is a partnership of the European Southern Observatory (ESO; Europe, representing its member states), NSF, and National Institutes of Natural Sciences of Japan, together with National Research Council (Canada), Ministry of Science and Technology (MOST; Taiwan), Academia Sinica Institute of Astronomy and Astro-physics(ASIAA; Taiwan), and Korea Astronomy and Space Science Institute (KASI; Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities, Inc. (AUI)/NRAO, and the National Astronomical Observatory of Japan (NAOJ). The NRAO is a facility of the NSF operated under cooperative agreement by AUI. This paper has made use of the following APEX data: Project ID T-091.F-00062013. APEX is a collaboration between the Max-PlanckInstitut fur Radioastronomie (Germany), ESO, and the Onsala Space Observatory (Sweden). The SMA is a joint project between the SAO and ASIAA and is funded by the Smithsonian Institution and the Academia Sinica. The JCMT is operated by the East Asian Observatory on behalf of the NAOJ, ASIAA, and KASI, as well as the Ministry of Finance of China, Chinese Academy of Sciences, and the National Key R&D Program (No. 2017YFA0402700) of China. Additional funding support for the JCMT is provided by the Science and Technologies Facility Council (UK) and participating universities in the UK and Canada. The LMT is a project operated by the Instituto Nacional de Astrofisica, Optica y Electronica (Mexico) and the University of Massachusetts at Amherst (USA), with financial support from the Consejo Nacional de Ciencia y Tecnologia and the National Science Foundation. The IRAM 30-m telescope on Pico Veleta, Spain is operated by IRAM and supported by CNRS (Centre National de la Recherche Scientifique, France), MPG (Max PlanckGesellschaft, Germany) and IGN (Instituto Geografico Nacional, Spain). The SMT is operated by the Arizona Radio Observatory, a part of the Steward Observatory of the University of Arizona, with financial support of operations from the State of Arizona and financial support for instrumentation development from the NSF. The SPT is supported by the National Science Foundation through Grant No. PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center Grant No. PHY1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. The SPT hydrogen maser was provided on loan from the GLT, courtesy of ASIAA. The EHTC has received generous donations of FPGA chips from Xilinx Inc., under the Xilinx University Program. The EHTC has benefited from technology shared under open-source license by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). The EHT project is grateful to T4Science and Microsemi for their assistance with Hydrogen Masers. This research has made use of NASA's Astrophysics Data System. We gratefully acknowledge the support provided by the extended staff of the ALMA, both from the inception of the ALMA Phasing Project through the observational campaigns of 2017 and 2018. We would like to thank A. Deller and W. Brisken for EHT-specific support with the use of DiFX. We acknowledge the significance that Maunakea, where the SMA and JCMT EHT stations are located, has for the indigenous Hawaiian people. Facilities: EHT, ALMA, APEX, IRAM:30 m, JCMT, LMT, SMA, ARO:SMT, SPT. Software: AIPS [102], ParselTongue [103], GNU Parallel [104], eht-imaging [105], Difmap [106], Numpy [107], Scipy [108], Pandas [109], Astropy [110,111], Jupyter [112], Matplotlib [113], THEMIS [114], DMC [115], polsolve [116], GPCAL [117].Peer reviewe
    corecore