29 research outputs found

    Immunogenicity and safety of concomitant administration of a measles, mumps and rubella vaccine (M-M-RvaxPro®) and a varicella vaccine (VARIVAX®) by intramuscular or subcutaneous routes at separate injection sites: a randomised clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When this trial was initiated, the combined measles, mumps and rubella (MMR) vaccine was licensed for subcutaneous administration in all European countries and for intramuscular administration in some countries, whereas varicella vaccine was licensed only for subcutaneous administration. This study evaluated the intramuscular administration of an MMR vaccine (M-M-RvaxPro<sup>®</sup>) and a varicella vaccine (VARIVAX<sup>®</sup>) compared with the subcutaneous route.</p> <p>Methods</p> <p>An open-label randomised trial was performed in France and Germany. Healthy children, aged 12 to18 months, received single injections of M-M-RvaxPro and VARIVAX concomitantly at separate injection sites. Both vaccines were administered either intramuscularly (IM group, <it>n </it>= 374) or subcutaneously (SC group, <it>n </it>= 378). Immunogenicity was assessed before vaccination and 42 days after vaccination. Injection-site erythema, swelling and pain were recorded from days 0 to 4 after vaccination. Body temperature was monitored daily between 0 and 42 days after vaccination. Other adverse events were recorded up to 42 days after vaccination and serious adverse events until the second study visit.</p> <p>Results</p> <p>Antibody response rates at day 42 in the per-protocol set of children initially seronegative to measles, mumps, rubella or varicella were similar between the IM and SC groups for all four antigens. Response rates were 94 to 96% for measles, 98% for both mumps and rubella and 86 to 88% for varicella. For children initially seronegative to varicella, 99% achieved the seroconversion threshold (antibody concentrations of ≥ 1.25 gpELISA units/ml). Erythema and swelling were the most frequently reported injection-site reactions for both vaccines. Most injection-site reactions were of mild intensity or small size (≤ 2.5 cm). There was a trend for lower rates of injection-site erythema and swelling in the IM group. The incidence and nature of systemic adverse events were comparable for the two routes of administration, except varicella-like rashes, which were less frequent in the IM group.</p> <p>Conclusion</p> <p>The immunogenicities of M-M-RvaxPro and VARIVAX administered by the intramuscular route were comparable with those following subcutaneous administration, and the tolerability of the two vaccines was comparable regardless of administration route. Integration of both administration routes in the current European indications for the two vaccines will now allow physicians in Europe to choose their preferred administration route in routine clinical practice.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00432523</p

    Role of CO2 in the formation of gold deposits

    No full text
    Much of global gold production has come from deposits with uneconomic concentrations of base metals, such as copper, lead and zinc. These 'gold-only' deposits are thought to have formed from hot, aqueous fluids rich in carbon dioxide, but only minor significance has been attached to the role of the CO2 in the process of gold transport. This is because chemical bonding between gold ions and CO2 species is not strong, and so it is unlikely that CO2 has a direct role in gold transport. An alternative indirect role for CO2 as a weak acid that buffers pH has also appeared unlikely, because previously inferred pH values for such gold-bearing fluids are variable. Here we show that such calculated pH values are unlikely to record conditions of gold transport, and propose that CO2 may play a critical role during gold transport by buffering the fluid in a pH range where elevated gold concentration can be maintained by complexation with reduced sulphur. Our conclusions, which are supported by geochemical modelling, may provide a platform for new gold exploration methods

    Modeling and Mapping the Probability of Occurrence of Invasive Wild Pigs across the Contiguous United States

    Get PDF
    Wild pigs (Sus scrofa), also known as wild swine, feral pigs, or feral hogs, are one of the most widespread and successful invasive species around the world. Wild pigs have been linked to extensive and costly agricultural damage and present a serious threat to plant and animal communities due to their rooting behavior and omnivorous diet. We modeled the current distribution of wild pigs in the United States to better understand the physiological and ecological factors that may determine their invasive potential and to guide future study and eradication efforts. Using national-scale wild pig occurrence data reported between 1982 and 2012 by wildlife management professionals, we estimated the probability of wild pig occurrence across the United States using a logistic discrimination function and environmental covariates hypothesized to influence the distribution of the species. Our results suggest the distribution of wild pigs in the U.S. was most strongly limited by cold temperatures and availability of water, and that they were most likely to occur where potential home ranges had higher habitat heterogeneity, providing access to multiple key resources including water, forage, and cover. High probability of occurrence was also associated with frequent high temperatures, up to a high threshold. However, this pattern is driven by pigs’ historic distribution in warm climates of the southern U.S. Further study of pigs’ ability to persist in cold northern climates is needed to better understand whether low temperatures actually limit their distribution. Our model highlights areas at risk of invasion as those with habitat conditions similar to those found in pigs’ current range that are also near current populations. This study provides a macro-scale approach to generalist species distribution modeling that is applicable to other generalist and invasive species
    corecore