1,263 research outputs found

    Myositis autoantibodies in Korean patients with inflammatory myositis: Anti-140-kDa polypeptide antibody is primarily associated with rapidly progressive interstitial lung disease independent of clinically amyopathic dermatomyositis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the association between myositis autoantibodies and clinical subsets of inflammatory myositis in Korean patients.</p> <p>Methods</p> <p>Immunoprecipitation was performed using the sera of classic polymyositis (PM) (n = 11) and dermatomyositis (DM) (n = 38) patients who met the Bohan and Peter criteria for definite inflammatory myositis. A panel of defined myositis autoantibodies was surveyed to investigate the association between each autoantibody and clinical subsets of inflammatory myositis.</p> <p>Results</p> <p>Either MSAs, anti-p140, or anti-p155/140 antibodies were found in 63.3% (31/49) of the study subjects. Anti-140-kDa-polypeptide (anti-p140) (18.4%, 9/49) and anti-155/140-kDa polypeptide (anti-p155/140) (16.3%, 8/49) antibodies were the most common, followed by anti-Mi2 (14.3%, 7/49), anti-ARS (12.2%, 6/49) and anti-SRP (2.0%, 1/49) antibodies. All MSAs and anti-p140 and anti-p155/140 antibodies were mutually exclusive. Anti-p140 (23.7%, 9/38), anti-p155/140 (21.1%, 8/38), and anti-Mi2 (18.4%, 3/38) antibodies were found exclusively in DM patients. Anti-p140 antibody was associated with rapidly progressive interstitial lung disease (ILD) (p = 0.001), with a sensitivity of 100.0% (4/4) and a specificity of 85.3% (29/34) in DM patients. Anti-p155/140 antibody was associated with cancer-associated DM (p = 0.009), with a sensitivity of 55.6% (5/9) and a specificity of 89.7% (26/29). Cancer-associated survival was significantly worse when anti-p155/140 antibody was present (19.2 ± 7.6 vs. 65.0 ± 3.5 months, p = 0.032). Finally, anti-ARS antibodies were associated with stable or slowly progressive ILD in PM and DM patients (p = 0.005).</p> <p>Conclusions</p> <p>Anti-p140 and anti-p155/140 antibodies were commonly found autoantibodies in Korean patients with inflammatory myositis. Despite the lack of clinically amyopathic DM patients in the study subjects, a strong association was observed between anti-p140 antibody and rapidly progressive ILD. Anti-p155/140 antibody was associated with cancer-associated myositis and poor survival.</p

    Role of leukocyte cell-derived chemotaxin 2 as a biomarker in hepatocellular carcinoma

    Get PDF
    We sought to identify a secreted biomarker for β-catenin activation commonly seen in hepatocellular carcinoma (HCC). By examination of our previously published genearray of hepatocyte-specific β-catenin knockout (KO) livers, we identified secreted factors whose expression may be β-catenin-dependent. We verified expression and secretion of the leading factor in HCC cells transfected with mutated (Hep3BS33Y)-β- catenin. Serum levels of biomarker were next investigated in a mouse model of HCC with β-catenin gene (Ctnnb1) mutations and eventually in HCC patients. Leukocyte cell-derived chemotaxin-2 (LECT2) expression was decreased in KO livers. Hep3BS33Y expressed and secreted more LECT2 in media as compared to Hep3BWT. Mice developing HCC with Ctnnb1 mutations showed significantly higher serum LECT2 levels. However patients with CTNNB1 mutations showed LECT2 levels of 54.28±22.32 ng/mL (Mean ± SD; n = 8) that were insignificantly different from patients with non-neoplastic chronic liver disease (32.8±21.1 ng/mL; n = 15) or healthy volunteers (33.2±7.2 ng/mL; n = 11). Intriguingly, patients without β-catenin mutations showed significantly higher serum LECT2 levels (54.26 ± 22.25 ng/mL; n = 46). While β-catenin activation was evident in a subset of non-mutant β-catenin HCC group with high LECT2 expression, serum LECT2 was unequivocally similar between β-catenin-active and -normal group. Further analysis showed that LECT2 levels greater than 50 ng/ml diagnosed HCC in patients irrespective of β-catenin mutations with specificity of 96.1% and positive predictive value of 97.0%. Thus, LECT2 is regulated by β-catenin in HCC in both mice and men, but serum LECT2 reflects β-catenin activity only in mice. Serum LECT2 could be a potential biomarker of HCC in patients. © 2014 Okabe et al

    Identification of blood-based molecular signatures for prediction of response and relapse in schizophrenia patients

    Get PDF
    The current inability of psychiatric medicine to objectively select the most appropriate treatment or to predict imminent relapse are major factors contributing to the severity and clinical burden of schizophrenia. We have previously used multiplexed immunoassays to show that schizophrenia patients have a distinctive molecular signature in serum compared with healthy control subjects. In the present study, we used the same approach to measure biomarkers in a population of 77 schizophrenia patients who were followed up over 25 months with four aims: (1) to identify molecules associated with symptom severity in antipsychotic naive and unmedicated patients, (2) to determine biomarker signatures that could predict response over a 6-week treatment period, (3) to identify molecular panels that could predict the time to relapse in a cross-sectional population of patients in remission and (4) to investigate how the biological relapse signature changed throughout the treatment course. This led to identification of molecular signatures that could predict symptom improvement over the first 6 weeks of treatment as well as predict time to relapse in a subset of 18 patients who experienced recurrence of symptoms. This study provides the groundwork for the development of novel objective clinical tests that can help psychiatrists in the clinical management of schizophrenia

    Substrate docking to γ-secretase allows access of γ-secretase modulators to an allosteric site

    Get PDF
    γ-Secretase generates the peptides of Alzheimer's disease, Aβ40 and Aβ42, by cleaving the amyloid precursor protein within its transmembrane domain. γ-Secretase also cleaves numerous other substrates, raising concerns about γ-secretase inhibitor off-target effects. Another important class of drugs, γ-secretase modulators, alter the cleavage site of γ-secretase on amyloid precursor protein, changing the Aβ42/Aβ40 ratio, and are thus a promising therapeutic approach for Alzheimer's disease. However, the target for γ-secretase modulators is uncertain, with some data suggesting that they function on γ-secretase, whereas others support their binding to the amyloid precursor. In this paper we address this controversy by using a fluorescence resonance energy transfer-based assay to examine whether γ-secretase modulators alter Presenilin-1/γ-secretase conformation in intact cells in the absence of its natural substrates such as amyloid precursor protein and Notch. We report that the γ-secretase allosteric site is located within the γ-secretase complex, but substrate docking is needed for γ-secretase modulators to access this site

    Angelman syndrome: advancing the research frontier of neurodevelopmental disorders

    Get PDF
    This report is a meeting summary of the 2010 Angelman Syndrome Foundation's scientific symposium on the neuroscience of UBE3A. Angelman syndrome is characterized by loss of speech, severe developmental delay, seizures, and ataxia. These core symptoms are caused by maternal allele disruptions of a single gene—UBE3A. UBE3A encodes an E3 ubiquitin ligase that targets certain proteins for proteasomal degradation. This biology has led to the expectation that the identification of Ube3a protein targets will lead to therapies for Angelman syndrome. The recent discovery of Ube3a substrates such as Arc (activity-regulated cytoskeletal protein) provides new insight into the mechanisms underlying the synaptic function and plasticity deficits caused by the loss of Ube3a. In addition to identifying Ube3a substrates, there have also been recent advances in understanding UBE3A's integrated role in the neuronal repertoire of genes and protein interactions. A developmental picture is now emerging whereby UBE3A gene dosage on chromosome 15 alters synaptic function, with deficiencies leading to Angelman syndrome and overexpression associated with classic autism symptomatology

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Cold Hardiness and Supercooling Capacity in the Overwintering Larvae of the Codling Moth, Cydia pomonella

    Get PDF
    The codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), a worldwide apple pest, is classified as a freeze-intolerant organism and one of the most cold-tolerant pests. The objectives of this study were to examine the supercooling point of overwintering and non-diapausing larvae of C. pomonella as an index of its cold hardiness, and to assess larval mortality following 24 h exposure to extreme low temperatures ranging from -5 to -25°C. The mean (±SE) supercooling point for feeding larvae (third through fifth instars) was -12.4 ± 1.1°C. The mean supercooling point for cocooned, non-diapausing larvae (i.e., non-feeding stages) decreased as the days that the arvae were cocooned increased and changed between -15.1 ± 1.2°C for one to two day cocooned arvae and -19.2 ± 1.8°C for less than five day cocooned larvae. The mean (±SE) supercooling point for other non-feeding stages containing pupae and overwintering larvae were -19.9 ± 1.0°C and -20.2 ± 0.2°C, respectively. Mean supercooling points of C. pomonella larvae were significantly lower during the winter months than the summer months, and sex had no effect on the supercooling point of C. pomonella larvae. The mortality of larvae increased significantly after individuals were exposed to temperatures below the mean supercooling point of the population. The supercooling point was a good predictor of cold hardiness

    Prospectively Isolated Cancer-Associated CD10+ Fibroblasts Have Stronger Interactions with CD133+ Colon Cancer Cells than with CD133− Cancer Cells

    Get PDF
    Although CD133 has been reported to be a promising colon cancer stem cell marker, the biological functions of CD133+ colon cancer cells remain controversial. In the present study, we investigated the biological differences between CD133+ and CD133− colon cancer cells, with a particular focus on their interactions with cancer-associated fibroblasts, especially CD10+ fibroblasts. We used 19 primary colon cancer tissues, 30 primary cultures of fibroblasts derived from colon cancer tissues and 6 colon cancer cell lines. We isolated CD133+ and CD133− subpopulations from the colon cancer tissues and cultured cells. In vitro analyses revealed that the two populations showed similar biological behaviors in their proliferation and chemosensitivity. In vivo analyses revealed that CD133+ cells showed significantly greater tumor growth than CD133− cells (P = 0.007). Moreover, in cocultures with primary fibroblasts derived from colon cancer tissues, CD133+ cells exhibited significantly more invasive behaviors than CD133− cells (P<0.001), especially in cocultures with CD10+ fibroblasts (P<0.0001). Further in vivo analyses revealed that CD10+ fibroblasts enhanced the tumor growth of CD133+ cells significantly more than CD10− fibroblasts (P<0.05). These data demonstrate that the in vitro invasive properties and in vivo tumor growth of CD133+ colon cancer cells are enhanced in the presence of specific cancer-associated fibroblasts, CD10+ fibroblasts, suggesting that the interactions between these specific cell populations have important roles in cancer progression. Therefore, these specific interactions may be promising targets for new colon cancer therapies

    Surprisingly Simple Mechanical Behavior of a Complex Embryonic Tissue

    Get PDF
    Background: Previous studies suggest that mechanical feedback could coordinate morphogenetic events in embryos. Furthermore, embryonic tissues have complex structure and composition and undergo large deformations during morphogenesis. Hence we expect highly non-linear and loading-rate dependent tissue mechanical properties in embryos. Methodology/Principal Findings: We used micro-aspiration to test whether a simple linear viscoelastic model was sufficient to describe the mechanical behavior of gastrula stage Xenopus laevis embryonic tissue in vivo. We tested whether these embryonic tissues change their mechanical properties in response to mechanical stimuli but found no evidence of changes in the viscoelastic properties of the tissue in response to stress or stress application rate. We used this model to test hypotheses about the pattern of force generation during electrically induced tissue contractions. The dependence of contractions on suction pressure was most consistent with apical tension, and was inconsistent with isotropic contraction. Finally, stiffer clutches generated stronger contractions, suggesting that force generation and stiffness may be coupled in the embryo. Conclusions/Significance: The mechanical behavior of a complex, active embryonic tissue can be surprisingly well described by a simple linear viscoelastic model with power law creep compliance, even at high deformations. We found no evidence of mechanical feedback in this system. Together these results show that very simple mechanical models can be useful in describing embryo mechanics. © 2010 von Dassow et al

    Inhibition of lipoxygenase affects induction of both direct and indirect plant defences against herbivorous insects

    Get PDF
    Herbivore-induced plant defences influence the behaviour of insects associated with the plant. For biting–chewing herbivores the octadecanoid signal-transduction pathway has been suggested to play a key role in induced plant defence. To test this hypothesis in our plant—herbivore—parasitoid tritrophic system, we used phenidone, an inhibitor of the enzyme lipoxygenase (LOX), that catalyses the initial step in the octadecanoid pathway. Phenidone treatment of Brussels sprouts plants reduced the accumulation of internal signalling compounds in the octadecanoid pathway downstream of the step catalysed by LOX, i.e. 12-oxo-phytodienoic acid (OPDA) and jasmonic acid. The attraction of Cotesia glomerata parasitoids to host-infested plants was significantly reduced by phenidone treatment. The three herbivores investigated, i.e. the specialists Plutella xylostella, Pieris brassicae and Pieris rapae, showed different oviposition preferences for intact and infested plants, and for two species their preference for either intact or infested plants was shown to be LOX dependent. Our results show that phenidone inhibits the LOX-dependent defence response of the plant and that this inhibition can influence the behaviour of members of the associated insect community
    corecore