837 research outputs found

    Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disulfide bonds are one of the most common post-translational modifications found in proteins. The production of proteins that contain native disulfide bonds is challenging, especially on a large scale. Either the protein needs to be targeted to the endoplasmic reticulum in eukaryotes or to the prokaryotic periplasm. These compartments that are specialised for disulfide bond formation have an active catalyst for their formation, along with catalysts for isomerization to the native state. We have recently shown that it is possible to produce large amounts of prokaryotic disulfide bond containing proteins in the cytoplasm of wild-type bacteria such as <it>E. coli </it>by the introduction of catalysts for both of these processes.</p> <p>Results</p> <p>Here we show that the introduction of Erv1p, a sulfhydryl oxidase and a disulfide isomerase allows the efficient formation of natively folded eukaryotic proteins with multiple disulfide bonds in the cytoplasm of <it>E. coli</it>. The production of disulfide bonded proteins was also aided by the use of an appropriate fusion protein to keep the folding intermediates soluble and by choice of media. By combining the pre-expression of a sulfhydryl oxidase and a disulfide isomerase with these other factors, high level expression of even complex disulfide bonded eukaryotic proteins is possible</p> <p>Conclusions</p> <p>Our results show that the production of eukaryotic proteins with multiple disulfide bonds in the cytoplasm of <it>E. coli </it>is possible. The required exogenous components can be put onto a single plasmid vector allowing facile transfer between different prokaryotic strains. These results open up new avenues for the use of <it>E. coli </it>as a microbial cell factory.</p

    Quantum information can be negative

    Full text link
    Given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the "partial information" one system needs conditioned on it's prior information. It turns out to be given by an extremely simple formula, the conditional entropy. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, the sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a primitive "quantum state merging" which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, multiple access channels and multipartite assisted entanglement distillation (localizable entanglement). Negative channel capacities also receive a natural interpretation

    Linear Estimation of Location and Scale Parameters Using Partial Maxima

    Full text link
    Consider an i.i.d. sample X^*_1,X^*_2,...,X^*_n from a location-scale family, and assume that the only available observations consist of the partial maxima (or minima)sequence, X^*_{1:1},X^*_{2:2},...,X^*_{n:n}, where X^*_{j:j}=max{X^*_1,...,X^*_j}. This kind of truncation appears in several circumstances, including best performances in athletics events. In the case of partial maxima, the form of the BLUEs (best linear unbiased estimators) is quite similar to the form of the well-known Lloyd's (1952, Least-squares estimation of location and scale parameters using order statistics, Biometrika, vol. 39, pp. 88-95) BLUEs, based on (the sufficient sample of) order statistics, but, in contrast to the classical case, their consistency is no longer obvious. The present paper is mainly concerned with the scale parameter, showing that the variance of the partial maxima BLUE is at most of order O(1/log n), for a wide class of distributions.Comment: This article is devoted to the memory of my six-years-old, little daughter, Dionyssia, who leaved us on August 25, 2010, at Cephalonia isl. (26 pages, to appear in Metrika

    The Road to Quantum Computational Supremacy

    Full text link
    We present an idiosyncratic view of the race for quantum computational supremacy. Google's approach and IBM challenge are examined. An unexpected side-effect of the race is the significant progress in designing fast classical algorithms. Quantum supremacy, if achieved, won't make classical computing obsolete.Comment: 15 pages, 1 figur

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Characterizing eve: Analysing cybercrime actors in a large underground forum

    Get PDF
    Underground forums contain many thousands of active users, but the vast majority will be involved, at most, in minor levels of deviance. The number who engage in serious criminal activity is small. That being said, underground forums have played a significant role in several recent high-profile cybercrime activities. In this work we apply data science approaches to understand criminal pathways and characterize key actors related to illegal activity in one of the largest and longest- running underground forums. We combine the results of a logistic regression model with k-means clustering and social network analysis, verifying the findings using topic analysis. We identify variables relating to forum activity that predict the likelihood a user will become an actor of interest to law enforcement, and would therefore benefit the most from intervention. This work provides the first step towards identifying ways to deter the involvement of young people away from a career in cybercrime.Alan Turing Institut

    Analysis of symmetries in models of multi-strain infections

    Get PDF
    In mathematical studies of the dynamics of multi-strain diseases caused by antigenically diverse pathogens, there is a substantial interest in analytical insights. Using the example of a generic model of multi-strain diseases with cross-immunity between strains, we show that a significant understanding of the stability of steady states and possible dynamical behaviours can be achieved when the symmetry of interactions between strains is taken into account. Techniques of equivariant bifurcation theory allow one to identify the type of possible symmetry-breaking Hopf bifurcation, as well as to classify different periodic solutions in terms of their spatial and temporal symmetries. The approach is also illustrated on other models of multi-strain diseases, where the same methodology provides a systematic understanding of bifurcation scenarios and periodic behaviours. The results of the analysis are quite generic, and have wider implications for understanding the dynamics of a large class of models of multi-strain diseases

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.&lt;p&gt;&lt;/p&gt; Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).&lt;p&gt;&lt;/p&gt; Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.&lt;p&gt;&lt;/p&gt; Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’
    corecore