52 research outputs found

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions

    Full text link
    We consider the conformal field theory of N complex massless scalars in 2+1 dimensions, coupled to a U(N) Chern-Simons theory at level k. This theory has a 't Hooft large N limit, keeping fixed \lambda = N/k. We compute some correlation functions in this theory exactly as a function of \lambda, in the large N (planar) limit. We show that the results match with the general predictions of Maldacena and Zhiboedov for the correlators of theories that have high-spin symmetries in the large N limit. It has been suggested in the past that this theory is dual (in the large N limit) to the Legendre transform of the theory of fermions coupled to a Chern-Simons gauge field, and our results allow us to find the precise mapping between the two theories. We find that in the large N limit the theory of N scalars coupled to a U(N)_k Chern-Simons theory is equivalent to the Legendre transform of the theory of k fermions coupled to a U(k)_N Chern-Simons theory, thus providing a bosonization of the latter theory. We conjecture that perhaps this duality is valid also for finite values of N and k, where on the fermionic side we should now have (for N_f flavors) a U(k)_{N-N_f/2} theory. Similar results hold for real scalars (fermions) coupled to the O(N)_k Chern-Simons theory.Comment: 49 pages, 16 figures. v2: added reference

    Baryon Washout, Electroweak Phase Transition, and Perturbation Theory

    Get PDF
    We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently implementing the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for successful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite temperature effective potential and the one-loop sphaleron rate.Comment: 25 pages, 9 figures; v2 minor typos correcte

    Large N and Bosonization in Three Dimensions

    Full text link
    Bosonization is normally thought of as a purely two-dimensional phenomenon, and generic field theories with fermions in D>2 are not expected be describable by local bosonic actions, except in some special cases. We point out that 3D SU(N) gauge theories on R^{1,1} x S^{1}_{L} with adjoint fermions can be bosonized in the large N limit. The key feature of such theories is that they enjoy large N volume independence for arbitrary circle size L. A consequence of this is a large N equivalence between these 3D gauge theories and certain 2D gauge theories, which matches a set of correlation functions in the 3D theories to corresponding observables in the 2D theories. As an example, we focus on a 3D SU(N) gauge theory with one flavor of adjoint Majorana fermions and derive the large-N equivalent 2D gauge theory. The extra dimension is encoded in the color degrees of freedom of the 2D theory. We then apply the technique of non-Abelian bosonization to the 2D theory to obtain an equivalent local theory written purely in terms of bosonic variables. Hence the bosonized version of the large N three-dimensional theory turns out to live in two dimensions.Comment: 30 pages, 2 tables. v2 minor revisions, references adde

    STUDI EKSPERIMENTAL KARAKTERISTIK KUAT TEKAN DAN KARAKTERISTIK PEMBAKARAN BRIKET DAUN CENGKEH DAN JERAMI PADI

    Get PDF
    Penelitian ini mempelajari tentang karakteristik kuat tekan dan karakteristik pembakaran briket daun cengkeh dan jerami padi. Pembriketan dilakukan dengan menggunakan mesin pres hidrolik dengan tekanan pembriketan sebesar 450 kg/cm2, dengan bahan pengikat dan tanpa bahan pengikat. Bahan pengikat yang digunakan adalah lem kanji dengan kadar 5 %. Briket berbentuk silinder dengan diameter sekitar 3 cm dan tinggi 5 cm. Variasi parameter pembriketan yang digunakan adalah ukuran butir 20, 40 dan 80 mesh, kadar air 15 %, 20 % dan 25 %, serta suhu pembriketan sebesar 60 oC, 80 oC, 100 oC dan 120 oC. Uji pembakaran dilakukan dalam tungku berbentuk tabung horisontal berdiameter dalam 170 mm. Variasi perameter uji pembakaran yang digunakan adalah kecepatan aliran udara sebesar 0,6 m/s; 0,8 m/s; 1,0 m/s dan 1,2 m/s serta variasi ukuran butir sebesar 20, 40, dan 80 mesh. Suhu pembriketan berpengaruh signifikan terhadap peningkatan kuat tekan briket. Dari hasil uji pembakaran dapat ditentukan besarnya laju pembakaran, profil suhu pembakaran, nilai energi aktivasi (E ), konstanta Arrhenius (A), dan emisi CO. Dari semua percobaan, kadar emisi CO puncak lebih dari 400 ppm. Kata kunci: kuat tekan, daun cengkeh, jerami, bahan pengikat, ukuran butir, suhu pembriketan, kadar air, laju pembakaran, energi aktivasi, emisi CO.

    Mottness at finite doping and charge instabilities in cuprates

    Get PDF
    The intrinsic instability of underdoped copper oxides towards inhomogeneous states is one of the central puzzles of the physics of correlated materials. The influence of the Mott physics on the doping-temperature phase diagram of copper oxides represents a major issue that is subject of intense theoretical and experimental effort. Here, we investigate the ultrafast electron dynamics in prototypical single-layer Bi-based cuprates at the energy scale of the O-2p\u2192Cu-3d charge-transfer (CT) process. We demonstrate a clear evolution of the CT excitations from incoherent and localized, as in a Mott insulator, to coherent and delocalized, as in a conventional metal. This reorganization of the high-energy degrees of freedom occurs at the critical doping pcr 430.16 irrespective of the temperature, and it can be well described by dynamical mean field theory calculations. We argue that the onset of the low-temperature charge instabilities is the low-energy manifestation of the underlying Mottness that characterizes the p<pcr region of the phase diagram. This discovery sets a new framework for theories of charge order and low-temperature phases in underdoped copper oxides. ArXI

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure
    corecore