2,511 research outputs found

    Diffused quantum well solar cell

    Get PDF
    An alternative multi-bandgap solar cell made of diffused quantum well (DFQW) as the absorber is proposed here. The modeling of the spectral response and energy conversion efficiency of the solar cell will be shown. Significant enhancement in energy conversion efficiency is demonstrated when compared to that of the single bandgap cells.published_or_final_versio

    Indolin-2-one compounds targeting thioredoxin reductase as potential anticancer drug leads

    Get PDF
    Several compounds bearing the indolinone chemical scaffold are known to possess anticancer properties. For example, the tyrosine kinase inhibitor sunitinib is an arylideneindolin-2-one compound. The chemical versatility associated with structural modifications of indolinone compounds underlies the potential to discover additional derivatives possessing anticancer properties. Previously synthesized 3-(2-oxoethylidene)indolin-2-one compounds, also known as supercinnamaldehyde (SCA) compounds in reference to the parent compound 1 [1-methyl-3(2-oxopropylidene)indolin-2-one], bear a nitrogen-linked α,β-unsaturated carbonyl (Michael acceptor) moiety. Here we found that analogs bearing N-substituents, in particular compound 4 and 5 carrying an N-butyl and N-benzyl substituent, respectively, were strongly cytotoxic towards human HCT 116 colorectal and MCF-7 breast carcinoma cells. These compounds also displayed strong thioredoxin reductase (TrxR) inhibitory activity that was likely attributed to the electrophilicity of the Michael acceptor moiety. Their selectivity towards cellular TrxR inhibition over related antioxidant enzymes glutathione reductase (GR), thioredoxin (Trx) and glutathione peroxidase (GPx) was mediated through targeting of the selenocysteine (Sec) residue in the highly accessible C-terminal active site of TrxR. TrxR inhibition mediated by indolin-2-one compounds led to cellular Trx oxidation, increased oxidative stress and activation of apoptosis signal-regulating kinase 1 (ASK1). These events also led to activation of p38 and JNK mitogen-activated protein kinase (MAPK) signaling pathways, and cell death with apoptotic features of PARP cleavage and caspase 3 activation. In conclusion, these results suggest that indolin-2-one-based compounds specifically targeting TrxR may serve as novel drug leads for anticancer therapy

    Novel hybrid adaptive controller for manipulation in complex perturbation environments

    Get PDF
    © 2015 Smith et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. In this paper we present a hybrid control scheme, combining the advantages of task-space and joint-space control. The controller is based on a human-like adaptive design, which minimises both control effort and tracking error. Our novel hybrid adaptive controller has been tested in extensive simulations, in a scenario where a Baxter robot manipulator is affected by external disturbances in the form of interaction with the environment and tool-like end-effector perturbations. The results demonstrated improved performance in the hybrid controller over both of its component parts. In addition, we introduce a novel method for online adaptation of learning parameters, using the fuzzy control formalism to utilise expert knowledge from the experimenter. This mechanism of meta-learning induces further improvement in performance and avoids the need for tuning through trial testing

    Dijet signals of the Little Higgs model with T-parity

    Full text link
    The Littest Higgs model with T-parity (LHT), apart from offering a viable solution to the naturalness problem of the Standard Model, also predicts a set of new fermions as well as a candidate for dark matter. We explore the possibility of discovering the heavy T-odd quark Q_H at the LHC in a final state comprising two hard jets with a large missing transverse momentum. Also discussed is the role of heavy flavor tagging.Comment: Changes in text. Some references adde

    Warped Riemannian metrics for location-scale models

    Full text link
    The present paper shows that warped Riemannian metrics, a class of Riemannian metrics which play a prominent role in Riemannian geometry, are also of fundamental importance in information geometry. Precisely, the paper features a new theorem, which states that the Rao-Fisher information metric of any location-scale model, defined on a Riemannian manifold, is a warped Riemannian metric, whenever this model is invariant under the action of some Lie group. This theorem is a valuable tool in finding the expression of the Rao-Fisher information metric of location-scale models defined on high-dimensional Riemannian manifolds. Indeed, a warped Riemannian metric is fully determined by only two functions of a single variable, irrespective of the dimension of the underlying Riemannian manifold. Starting from this theorem, several original contributions are made. The expression of the Rao-Fisher information metric of the Riemannian Gaussian model is provided, for the first time in the literature. A generalised definition of the Mahalanobis distance is introduced, which is applicable to any location-scale model defined on a Riemannian manifold. The solution of the geodesic equation is obtained, for any Rao-Fisher information metric defined in terms of warped Riemannian metrics. Finally, using a mixture of analytical and numerical computations, it is shown that the parameter space of the von Mises-Fisher model of nn-dimensional directional data, when equipped with its Rao-Fisher information metric, becomes a Hadamard manifold, a simply-connected complete Riemannian manifold of negative sectional curvature, for n=2,…,8n = 2,\ldots,8. Hopefully, in upcoming work, this will be proved for any value of nn.Comment: first version, before submissio

    Situational Awareness of Influenza Activity Based on Multiple Streams of Surveillance Data Using Multivariate Dynamic Linear Model

    Get PDF
    BACKGROUND: Multiple sources of influenza surveillance data are becoming more available; however integration of these data streams for situational awareness of influenza activity is less explored. METHODS AND RESULTS: We applied multivariate time-series methods to sentinel outpatient and school absenteeism surveillance data in Hong Kong during 2004-2009. School absenteeism data and outpatient surveillance data experienced interruptions due to school holidays and changes in public health guidelines during the pandemic, including school closures and the establishment of special designated flu clinics, which in turn provided 'drop-in' fever counts surveillance data. A multivariate dynamic linear model was used to monitor influenza activity throughout epidemics based on all available data. The inferred level followed influenza activity closely at different times, while the inferred trend was less competent with low influenza activity. Correlations between inferred level and trend from the multivariate model and reference influenza activity, measured by the product of weekly laboratory influenza detection rates and weekly general practitioner influenza-like illness consultation rates, were calculated and compared with those from univariate models. Over the whole study period, there was a significantly higher correlation (rho = 0.82, p</=0.02) for the inferred trend based on the multivariate model compared to other univariate models, while the inferred trend from the multivariate model performed as well as the best univariate model in the pre-pandemic and the pandemic period. The inferred trend and level from the multivariate model was able to match, if not outperform, the best univariate model albeit with missing data plus drop-in and drop-out of different surveillance data streams. An overall influenza index combining level and trend was constructed to demonstrate another potential use of the method. CONCLUSIONS: Our results demonstrate the potential use of multiple streams of influenza surveillance data to promote situational awareness about the level and trend of seasonal and pandemic influenza activity.published_or_final_versio

    Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis

    Get PDF
    Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI. Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI. Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline. Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique

    The impact of solvent characteristics on performance and process stability of printed carbon resistive materials

    Get PDF
    Carbon conductive pastes deposited by screen printing are used in many commercial applications including sensors, PCB, batteries, and PV, and as such represent an important value-added coating. An experimental investigation was carried out into the role of the solvent on the drying characteristics, conductivity, and process consistency in screen printed carbon pastes. Four materials with solvent boiling points between 166 and 219°C were deposited at film thickness between 6 and 16 μm, and the sheet resistance and film thickness were measured after successive passes through an industrial dryer operating with an air temperature of 155°C. Sheet resistances of 14 Ω/sq. were obtained with the thicker films while thinner films produced a sheet resistance of 46 Ω/sq. Thinner films achieved a stable resistivity within a 2.5-min residence time, while the thicker films required a residence time in excess of 12.5 min to achieve a stable resistivity. As well as prolonging drying times, the higher boiling point increased the resistivity of the cured film. It is postulated that the lower resistance of the faster drying materials is a result of film stressing increasing inter particle contact. Process models indicate that multiple thin layers are a more efficient means of manufacture for the process parameters examined

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs
    • …
    corecore