32 research outputs found

    Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy

    Get PDF
    Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have a dismal prognosis. Survival outcomes have remained static in recent decades despite treatment intensification and novel therapies are urgently required. KMT2A-rearranged infant ALL cells are characterized by an abundance of promoter hypermethylation and exhibit high BCL-2 expression, highlighting potential for therapeutic targeting. Here, we show that hypomethylating agents exhibit in vitro additivity when combined with most conventional chemotherapeutic agents. However, in a subset of samples an antagonistic effect was seen between several agents. This was most evident when hypomethylating agents were combined with methotrexate, with upregulation of ATP-binding cassette transporters identified as a potential mechanism. Single agent treatment with azacitidine and decitabine significantly prolonged in vivo survival in KMT2A-rearranged infant ALL xenografts. Treatment of KMT2A-rearranged infant ALL cell lines with azacitidine and decitabine led to differential genome-wide DNA methylation, changes in gene expression and thermal proteome profiling revealed the target protein-binding landscape of these agents. The selective BCL-2 inhibitor, venetoclax, exhibited in vitro additivity in combination with hypomethylating or conventional chemotherapeutic agents. The addition of venetoclax to azacitidine resulted in a significant in vivo survival advantage indicating the therapeutic potential of this combination to improve outcome for infants with KMT2A-rearranged ALL

    A case of autism with an interstitial deletion on 4q leading to hemizygosity for genes encoding for glutamine and glycine neurotransmitter receptor sub-units (AMPA 2, GLRA3, GLRB) and neuropeptide receptors NPY1R, NPY5R

    Get PDF
    BACKGROUND: Autism is a pervasive developmental disorder characterized by a triad of deficits: qualitative impairments in social interactions, communication deficits, and repetitive and stereotyped patterns of behavior. Although autism is etiologically heterogeneous, family and twin studies have established a definite genetic basis. The inheritance of idiopathic autism is presumed to be complex, with many genes involved; environmental factors are also possibly contributory. The analysis of chromosome abnormalities associated with autism contributes greatly to the identification of autism candidate genes. CASE PRESENTATION: We describe a child with autistic disorder and an interstitial deletion on chromosome 4q. This child first presented at 12 months of age with developmental delay and minor dysmorphic features. At 4 years of age a diagnosis of Pervasive Developmental Disorder was made. At 11 years of age he met diagnostic criteria for autism. Cytogenetic studies revealed a chromosome 4q deletion. The karyotype was 46, XY del 4 (q31.3-q33). Here we report the clinical phenotype of the child and the molecular characterization of the deletion using molecular cytogenetic techniques and analysis of polymorphic markers. These studies revealed a 19 megabase deletion spanning 4q32 to 4q34. Analysis of existing polymorphic markers and new markers developed in this study revealed that the deletion arose on a paternally derived chromosome. To date 33 genes of known or inferred function are deleted as a consequence of the deletion. Among these are the AMPA 2 gene that encodes the glutamate receptor GluR2 sub-unit, GLRA3 and GLRB genes that encode glycine receptor subunits and neuropeptide Y receptor genes NPY1R and NPY5R. CONCLUSIONS: The deletion in this autistic subject serves to highlight specific autism candidate genes. He is hemizygous for AMPA 2, GLRA3, GLRB, NPY1R and NPY5R. GluR2 is the major determinant of AMPA receptor structure. Glutamate receptors maintain structural and functional plasticity of synapses. Neuropeptide Y and its receptors NPY1R and NPY5R play a role in hippocampal learning and memory. Glycine receptors are expressed in very early cortical development. Molecular cytogenetic studies and DNA sequence analysis in other patients with autism will be necessary to confirm that these genes are involved in autism

    Contrast-modulated stimuli produce more superimposition and predominate perception when competing with comparable luminance-modulated stimuli during interocular grouping

    Get PDF
    Interocular grouping (IOG) is a binocular visual function that can arise during multi-stable perception. IOG perception was initiated using split-grating stimuli constructed from luminance (L), luminance-modulated noise (LM) and contrast-modulated noise (CM). In Experiment 1, three different visibility levels were used for L and LM (or first-order) stimuli, and compared to fixed-visibility CM (or second-order) stimuli. Eight binocularly normal participants indicated whether they perceived full horizontal or vertical gratings, superimposition, or other (piecemeal and eye-of-origin) percepts. CM stimuli rarely generated full IOG, but predominantly generated superimposition. In Experiment 2, Levelt’s modified laws were tested for IOG in nine participants. Split-gratings presented to each eye contained different visibility LM gratings, or LM and CM gratings. The results for the LM-vs-LM conditions mostly followed the predictions of Levelt’s modified laws, whereas the results for the LM-vs-CM conditions did not. Counterintuitively, when high-visibility LM and low-visibility CM split-gratings were used, high-visibility LM components did not predominate IOG perception. Our findings suggest that higher proportions of superimposition during CM-vs-CM viewing are due to binocular combination, rather than mutual inhibition. It implies that IOG percepts are more likely to be mediated at an earlier monocular, rather than a binocular stage. Our previously proposed conceptual framework for conventional binocular rivalry, which includes asymmetric feedback, visual saliency, or a combination of both (Skerswetat et al. Sci Rep 8:14432, 2018), might also account for IOG. We speculate that opponency neurons might mediate coherent percepts when dissimilar information separately enters the eyes
    corecore