81 research outputs found

    Improving eye care for veterans with diabetes: An example of using the QUERI steps to move from evidence to implementation: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite being a critical part of improving healthcare quality, little is known about how best to move important research findings into clinical practice. To address this issue, the Department of Veterans Affairs (VA) developed the Quality Enhancement Research Initiative (QUERI), which provides a framework, a supportive structure, and resources to promote the more rapid implementation of evidence into practice.</p> <p>Methods</p> <p>This paper uses a practical example to demonstrate the use of the six-step QUERI process, which was developed as part of QUERI and provides a systematic approach for moving along the research to practice pipeline. Specifically, we describe a series of projects using the six-step framework to illustrate how this process guided work by the Diabetes Mellitus QUERI (DM-QUERI) Center to assess and improve eye care for veterans with diabetes.</p> <p>Results</p> <p>Within a relatively short time, DM-QUERI identified a high-priority issue, developed evidence to support a change in the diabetes eye screening performance measure, and identified a gap in quality of care. A prototype scheduling system to address gaps in screening and follow-up also was tested as part of an implementation project. We did not succeed in developing a fully functional pro-active scheduling system. This work did, however, provide important information to help us further understand patients' risk status, gaps in follow-up at participating eye clinics, specific considerations for additional implementation work in the area of proactive scheduling, and contributed to a change in the prevailing diabetes eye care performance measure.</p> <p>Conclusion</p> <p>Work by DM-QUERI to promote changes in the delivery of eye care services for veterans with diabetes demonstrates the value of the QUERI process in facilitating the more rapid implementation of evidence into practice. However, our experience with using the QUERI process also highlights certain challenges, including those related to the hybrid nature of the research-operations partnership as a mechanism for promoting rapid, system-wide implementation of important research findings. In addition, this paper suggests a number of important considerations for future implementation work, both in the area of pro-active scheduling interventions, as well as for implementation science in general.</p

    Overview of the VA Quality Enhancement Research Initiative (QUERI) and QUERI theme articles: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Continuing challenges to timely adoption of evidence-based clinical practices in healthcare have generated intense interest in the development and application of new implementation methods and frameworks. These challenges led the United States (U.S.) Department of Veterans Affairs (VA) to create the Quality Enhancement Research Initiative (QUERI) in the late 1990s. QUERI's purpose was to harness VA's health services research expertise and resources in an ongoing system-wide effort to improve the performance of the VA healthcare system and, thus, quality of care for veterans. QUERI in turn created a systematic means of involving VA researchers both in enhancing VA healthcare quality, by implementing evidence-based practices, and in contributing to the continuing development of implementation science.</p> <p>The efforts of VA researchers to improve healthcare delivery practices through QUERI and related initiatives are documented in a growing body of literature. The scientific frameworks and methodological approaches developed and employed by QUERI are less well described. A QUERI Series of articles in <it>Implementation Science </it>will illustrate many of these QUERI tools. This <it>Overview </it>article introduces both QUERI and the Series.</p> <p>Methods</p> <p>The <it>Overview </it>briefly explains the purpose and context of the QUERI Program. It then describes the following: the key operational structure of QUERI Centers, guiding frameworks designed to enhance implementation and related research, QUERI's progress and promise to date, and the Series' general content. QUERI's frameworks include a core set of steps for diagnosing and closing quality gaps and, simultaneously, advancing implementation science. Throughout the paper, the envisioned involvement and activities of VA researchers within QUERI Centers also are highlighted. The Series is then described, illustrating the use of QUERI frameworks and other tools designed to respond to implementation challenges.</p> <p>Conclusion</p> <p>QUERI's simultaneous pursuit of improvement and research goals within a large healthcare system may be unique. However, descriptions of this still-evolving effort, including its conceptual frameworks, methodological approaches, and enabling processes, should have applicability to implementation researchers in a range of health care settings. Thus, the <it>Series </it>is offered as a resource for other implementation research programs and researchers pursuing common goals in improving care and developing the field of implementation science.</p

    Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity

    Get PDF
    Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation

    Routine Outcomes Monitoring to Support Improving Care for Schizophrenia: Report from the VA Mental Health QUERI

    Get PDF
    In schizophrenia, treatments that improve outcomes have not been reliably disseminated. A major barrier to improving care has been a lack of routinely collected outcomes data that identify patients who are failing to improve or not receiving effective treatments. To support high quality care, the VA Mental Health QUERI used literature review, expert interviews, and a national panel process to increase consensus regarding outcomes monitoring instruments and strategies that support quality improvement. There was very good consensus in the domains of psychotic symptoms, side-effects, drugs and alcohol, depression, caregivers, vocational functioning, and community tenure. There are validated instruments and assessment strategies that are feasible for quality improvement in routine practice

    Modeling of subcutaneous absorption kinetics of infusion solutions in the elderly using technetium

    No full text
    Absorption kinetics of solutes given with the subcutaneous administration of fluids is ill-defined. The gamma emitter, technitium pertechnetate, enabled estimates of absorption rate to be estimated independently using two approaches. In the first approach, the counts remaining at the site were estimated by imaging above the subcutaneous administration site, whereas in the second approach, the plasma technetium concentration-time profiles were monitored up to 8 hr after technetium administration. Boluses of technetium pertechnetate were given both intravenously and subcutaneously on separate occasions with a multiple dosing regimen using three doses on each occasion. The disposition of technetium after iv administration was best described by biexponential kinetics with a V-ss of 0.30 +/- 0.11 L/kg and a clearance of 30.0 +/- 13.1 ml/min. The subcutaneous absorption kinetics was best described as a single exponential process with a half-life of 18.16 +/- 3.97 min by image analysis and a half-life of 11.58 +/- 2.48 min using plasma technetium time data. The bioavailability of technetium by the subcutaneous route was estimated to be 0.96 +/- 0.12. The absorption half-life showed no consistent change with the duration of the subcutaneous infusion. The amount remaining at the absorption site with time was similar when analyzed using image analysis, and plasma concentrations assuming multiexponential disposition kinetics and a first-order absorption process. Profiles of fraction remaining at the absorption sire generated by deconvolution analysis, image analysis, and assumption of a constant first-order absorption process were similar. Slowing of absorption from the subcutaneous administration site is apparent after the last bolus dose in three of the subjects and can De associated with the stopping of the infusion. In a fourth subject, the retention of technetium at the subcutaneous site is more consistent with accumulation of technetium near the absorption site as a result of systemic recirculation

    Model Representation of Salicylate Pharmacokinetics Using Unbound Plasma Salicylate Concentrations and Metabolite Urinary-Excretion Rates Following a Single Oral Dose

    No full text
    The pharmacokinetics of salicylic acid (SA) and its metabolites have been studied in 5 volunteers after administration of 3 g salicylic acid (as sodium salicylate) and collection of serial samples of blood and urine. SA and its metabolites were assayed with a HPLC method specific for each species. The urinary excretion rates of individual metabolites were analyzed using unbound plasma SA concentrations and Lineweaver-Burke plots. The analysis confirmed that the formation of SA urate (SU) and SA phenolic glucuronide (SPG) metabolites are saturable processes, and showed that the Michaelis-Menten values derived are consistent with earlier estimates derived solely from urinary data. The unbound salicylate plasma concentration-time profiles were then analyzed with various models assuming either saturable clearances for metabolite formation and/or saturable protein binding. The data were best described with a model that included both saturable protein binding and saturable metabolism. The model assumed first-order absorption kinetics and instantaneous distribution into extravascular and tissue compartments. The model was validated by comparing predicted relationships between the apparent volume of distribution, clearance, and plasma salicylate concentrations with previous relationships obtained using steady state data
    corecore