104 research outputs found

    Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Get PDF
    BACKGROUND: Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF) have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. METHODS: We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C), the serotonin 3A receptor (HTR3A), the dopamine D(4 )receptor (DRD4), and the dopamine β-hydroxylase (DBH) genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA), homovanillic acid (HVA), and 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy volunteers (n = 90). RESULTS: The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02). The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005) and HVA (p = 0.009) concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. CONCLUSIONS: The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system

    Large-scale collaboration in ENIGMA-EEG: A perspective on the meta-analytic approach to link neurological and psychiatric liability genes to electrophysiological brain activity

    Get PDF
    BACKGROUND AND PURPOSE: The ENIGMA-EEG working group was established to enable large-scale international collaborations among cohorts that investigate the genetics of brain function measured with electroencephalography (EEG). In this perspective, we will discuss why analyzing the genetics of functional brain activity may be crucial for understanding how neurological and psychiatric liability genes affect the brain. METHODS: We summarize how we have performed our currently largest genome-wide association study of oscillatory brain activity in EEG recordings by meta-analyzing the results across five participating cohorts, resulting in the first genome-wide significant hits for oscillatory brain function located in/near genes that were previously associated with psychiatric disorders. We describe how we have tackled methodological issues surrounding genetic meta-analysis of EEG features. We discuss the importance of harmonizing EEG signal processing, cleaning, and feature extraction. Finally, we explain our selection of EEG features currently being investigated, including the temporal dynamics of oscillations and the connectivity network based on synchronization of oscillations. RESULTS: We present data that show how to perform systematic quality control and evaluate how choices in reference electrode and montage affect individual differences in EEG parameters. CONCLUSION: The long list of potential challenges to our large-scale meta-analytic approach requires extensive effort and organization between participating cohorts; however, our perspective shows that these challenges are surmountable. Our perspective argues that elucidating the genetic of EEG oscillatory activity is a worthwhile effort in order to elucidate the pathway from gene to disease liability

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Morphological correlates to cognitive dysfunction in schizophrenia as studied with Bayesian regression

    Get PDF
    BACKGROUND: Relationships between cognitive deficits and brain morphological changes observed in schizophrenia are alternately explained by less gray matter in the brain cerebral cortex, by alterations in neural circuitry involving the basal ganglia, and by alteration in cerebellar structures and related neural circuitry. This work explored a model encompassing all of these possibilities to identify the strongest morphological relationships to cognitive skill in schizophrenia. METHODS: Seventy-one patients with schizophrenia and sixty-five healthy control subjects were characterized by neuropsychological tests covering six functional domains. Measures of sixteen brain morphological structures were taken using semi-automatic and fully manual tracing of MRI images, with the full set of measures completed on thirty of the patients and twenty controls. Group differences were calculated. A Bayesian decision-theoretic method identified those morphological features, which best explained neuropsychological test scores in the context of a multivariate response linear model with interactions. RESULTS: Patients performed significantly worse on all neuropsychological tests except some regarding executive function. The most prominent morphological observations were enlarged ventricles, reduced posterior superior vermis gray matter volumes, and increased putamen gray matter volumes in the patients. The Bayesian method associated putamen volumes with verbal learning, vigilance, and (to a lesser extent) executive function, while caudate volumes were associated with working memory. Vermis regions were associated with vigilance, executive function, and, less strongly, visuo-motor speed. Ventricular volume was strongly associated with visuo-motor speed, vocabulary, and executive function. Those neuropsychological tests, which were strongly associated to ventricular volume, showed only weak association to diagnosis, possibly because ventricular volume was regarded a proxy for diagnosis. Diagnosis was strongly associated with the other neuropsychological tests, implying that the morphological associations for these tasks reflected morphological effects and not merely group volumetric differences. Interaction effects were rarely associated, indicating that volumetric relationships to neuropsychological performance were similar for both patients and controls. CONCLUSION: The association of subcortical and cerebellar structures to verbal learning, vigilance, and working memory supports the importance of neural connectivity to these functions. The finding that a morphological indicator of diagnosis (ventricular volume) provided more explanatory power than diagnosis itself for visuo-motor speed, vocabulary, and executive function suggests that volumetric abnormalities in the disease are more important for cognition than non-morphological features

    Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphisms in dopaminergic genes may influence cigarette smoking by their potential impact on dopamine reward pathway function. <it>A1 </it>allele of <it>DRD2 </it>gene is associated with a reduced dopamine D2 receptor density, and it has been hypothesised that <it>A1 </it>carriers are more vulnerable to smoking. In turn, the 9-repeat allele of dopamine transporter gene (<it>SLC6A3</it>) has been associated with a substantial reduction in dopamine transporter, what might result in the higher level of dopamine in the synaptic cleft, and thereby protective role of this allele from smoking. In the present study we investigated whether polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes and their combinations are associated with the smoking habit in the Polish population.</p> <p>Methods</p> <p>Genotyping for <it>Taq</it>I<it>A </it>polymorphism of <it>DRD2 </it>and <it>SLC6A3 </it>VNTR polymorphism was performed in 150 ever-smokers and 158 never-smokers. The association between the smoking status and smoking phenotypes (related to the number of cigarettes smoked daily and age of starting regular smoking), and genotype/genotype combinations was expressed by ORs together with 95% CI. Alpha level of 0.05, with Bonferroni correction whenever appropriate, was used for statistical significance.</p> <p>Results</p> <p>At the used alpha levels no association between <it>DRD2 </it>and <it>SLC6A</it>3 genotypes and smoking status was found. However, <it>A1 </it>allele carriers reported longer abstinence periods on quitting attempts than non-carriers (p = 0.049). The ORs for heavier smoking were 0.38 (0.17-0.88), p = 0.023, and 0.39 (0.17-0.88), p = 0.021 in carriers compared to non-carriers of <it>A1 </it>or <it>*9 </it>allele, respectively, and the OR for this smoking phenotype was 8.68 (2.47-30.46), p = 0.0005 for the <it>A1</it>-/<it>9</it>- genotype combination, relatively to the <it>A1</it>+/<it>9</it>+. Carriers of <it>*9 </it>allele of <it>SLC6A3 </it>had over twice a lower risk to start smoking before the age of 20 years compared to non-carriers (sex-adjusted OR = 0.44; 95% CI: 0.22-0.89; p = 0.0017), and subjects with <it>A1-/9- </it>genotype combination had a higher risk for staring regular smoking before the age of 20 years in comparison to subjects with <it>A1+/9+ </it>genotype combination (sex-adjusted OR = 3.79; 95% CI:1.03-13.90; p = 0.003).</p> <p>Conclusion</p> <p>Polymorphic variants of <it>DRD2 </it>and <it>SLC6A3 </it>genes may influence some aspects of the smoking behavior, including age of starting regular smoking, the level of cigarette consumption, and periods of abstinence. Further large sample studies are needed to verify this hypothesis.</p

    Dopamine D2 receptor polymorphisms and susceptibility to alcohol dependence in Indian males: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is an important neurotransmitter involved in reward mechanism in the brain and thereby influences development and relapse of alcohol dependence. The dopamine D2 receptor (<it>DRD2</it>) gene on chromosome 11 (q22-q23) has been found to be associated with increased alcohol consumption through mechanisms involving incentive salience attributions and craving in alcoholic patients. Therefore, we investigated the association of three single nucleotide polymorphisms (SNP) in <it>DRD2 </it>gene with alcohol dependence in the north Indian subjects.</p> <p>Methods</p> <p>In a retrospective analysis, genetic association of three polymorphisms from <it>DRD2 </it>gene with alcohol dependence was investigated using a case-control approach. Alcohol dependence was determined by DSM-IV criteria and a total of 90 alcoholics and 60 healthy unrelated age-matched control subjects were recruited. Odds ratio and confidence interval was calculated to determine risk conferred by a predisposing allele/genotype/haplotype. Logistic regression analysis was carried out to correlate various clinical parameters with genotypes, and to study pair-wise interactions between SNPs.</p> <p>Results</p> <p>The study showed a significant association of -141C Ins allele and a trend of association of TaqI A1 allele of <it>DRD2 </it>with alcohol dependence. Haplotype with the predisposing -141C Ins and TaqI A1 alleles (-141C Ins-A-A1) seems to confer ≈ 2.5 times more risk to develop alcohol dependence.</p> <p>Conclusions</p> <p>The study provides preliminary insight into genetic risk to alcohol dependence in Indian males. Two polymorphisms namely, -141C Ins/Del and TaqI A in <it>DRD2 </it>gene may have clinical implications among Indian alcoholic subjects.</p

    The dopamine D2 receptor mediates approach-avoidance tendencies in smokers

    Get PDF
    Dopamine D2 receptors (DRD2) have been strongly implicated in reward processing of natural stimuli and drugs. By using the Approach-Avoidance Task (AAT), we recently demonstrated that smokers show an increased approach bias toward smoking-related cues but not toward naturally-rewarding stimuli. Here we examined the contribution of the DRD2 Taq1B polymorphism to smokers’ and non-smokers’ responsivity toward smoking versus naturally-rewarding stimuli in the AAT. Smokers carrying the minor B1 allele of the DRD2 Taq1B polymorphism showed reduced approach behavior for food-related pictures compared to non-smokers with the same allele. In the group of smokers, a higher approach-bias toward smoking-related compared to food-related pictures was found in carriers of the B1 allele. This pattern was not evident in smokers homozygous for the B2 allele. Additionally, smokers with the B1 allele reported fewer attempts to quit smoking relative to smokers homozygous for the B2 allele. This is the first study demonstrating that behavioral shifts in response to smoking relative to natural rewards in smokers are mediated by the DRD2 Taq1B polymorphism. Our results indicate a reduced natural-reward brain reactivity in smokers with a genetically determined decrease in dopaminergic activity (i.e., reduction of DRD2 availability). It remains to be determined whether this pattern might be related to a different outcome after psychological cessation interventions, i.e. AAT modification paradigms, in smokers

    Deficient Dopamine D2 Receptor Function Causes Renal Inflammation Independently of High Blood Pressure

    Get PDF
    Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D2 receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D2−/−) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D2 receptor (D2R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D2−/− mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D2R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D2R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D2R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D2R expression and function
    • …
    corecore