41 research outputs found

    Combination disease-modifying treatment in spinal muscular atrophy: A proposed classification

    Get PDF
    We sought to devise a rational, systematic approach for defining/grouping survival motor neuron-targeted disease-modifying treatment (DMT) scenarios. The proposed classification is primarily based on a two-part differentiation: initial DMT, and persistence/discontinuation of subsequent DMT(s). Treatment categories were identified: monotherapy add-on, transient add-on, combination with onasemnogene abeparvovec, bridging to onasemnogene abeparvovec, and switching to onasemnogene abeparvovec. We validated this approach by applying the classification to the 443 patients currently in the RESTORE registry and explored the demographics of these different groups of patients. This work forms the basis to explore the safety and efficacy profile of the different combinations of DMT in SMA

    Constitutive RB1 mutation in a child conceived by in vitro fertilization: implications for genetic counseling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to identify mutations associated with bilateral retinoblastoma in a quadruplet conceived by in vitro fertilization, and to trace the parental origin of mutations in the four quadruplets and their father.</p> <p>Methods</p> <p>Mutational screening was carried out by sequencing. Genotyping was carried out for determining quadruplet zygosity.</p> <p>Results</p> <p>The proband was a carrier of a novel <it>RB1</it> constitutive mutation (g.2056C>G) which was not detected in her father or her unaffected sisters, and of two other mutations (g.39606 C>T and g.174351T>A) also present in two monozygotic sisters. The novel mutation probably occurred de novo while the others were of likely maternal origin. The novel mutation, affecting the Kozak consensus at the 5'UTR of <it>RB1</it> and g.174351T>A were likely associated to retinoblastoma in the proband.</p> <p>Conclusion</p> <p>Molecular diagnosis of retinoblastoma requires genotypic data of the family for determining hereditary transmission. In the case of children generated by IVF with oocytes from an anonymous donor which had been stored in a cell repository, this might not be successfully accomplished, making precise diagnosis impracticable for genetic counseling.</p

    Neurofilament as a potential biomarker for spinal muscular atrophy

    Get PDF
    Objective: To evaluate plasma phosphorylated neurofilament heavy chain (pNF-H) as a biomarker in spinal muscular atrophy (SMA). Methods: Levels of pNF-H were measured using the ProteinSimpleŸ platform in plasma samples from infants with SMA enrolled in ENDEAR (NCT02193074) and infants/children without neurological disease. Results: Median pNF-H plasma level was 167.0 pg/mL (7.46-7,030; n = 34) in children without SMA (aged 7 weeks-18 years) and was higher in those aged < 1 versus 1-18 years (P = 0.0002). In ENDEAR participants with infantile-onset SMA, median baseline pNF-H level (15,400 pg/mL; 2390-50,100; n = 117) was ~10-fold higher than that of age-matched infants without SMA (P < 0.0001) and ~90-fold higher than children without SMA (P < 0.0001). Higher pretreatment pNF-H levels in infants with SMA were associated with younger age at symptom onset, diagnosis, and first dose; lower baseline Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders score; and lower peroneal compound muscle potential amplitude. Nusinersen treatment was associated with a rapid and greater decline in pNF-H levels: nusinersen-treated infants experienced a steep 71.9% decline at 2 months to 90.1% decline at 10 months; sham control-treated infants declined steadily by 16.2% at 2 months and 60.3% at 10 months. Interpretation: Plasma pNF-H levels are elevated in infants with SMA. Levels inversely correlate with age at first dose and several markers of disease severity. Nusinersen treatment is associated with a significant decline in pNF-H levels followed by relative stabilization. Together these data suggest plasma pNF-H is a promising marker of disease activity/treatment response in infants with SMA

    Mutation spectrum of 122 hemophilia A families from Taiwanese population by LD-PCR, DHPLC, multiplex PCR and evaluating the clinical application of HRM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemophilia A represents the most common and severe inherited hemorrhagic disorder. It is caused by mutations in the F8 gene, which leads to a deficiency or dysfunctional factor VIII protein, an essential cofactor in the factor X activation complex.</p> <p>Methods</p> <p>We used long-distance polymerase chain reaction and denaturing high performance liquid chromatography for mutation scanning of the F8 gene. We designed the competitive multiplex PCR to identify the carrier with exonal deletions. In order to facilitate throughput and minimize the cost of mutation scanning, we also evaluated a new mutation scanning technique, high resolution melting analysis (HRM), as an alternative screening method.</p> <p>Results</p> <p>We presented the results of detailed screening of 122 Taiwanese families with hemophilia A and reported twenty-nine novel mutations. There was one family identified with whole exons deletion, and the carriers were successfully recognized by multiplex PCR. By HRM, the different melting curve patterns were easily identified in 25 out of 28 cases (89%) and 15 out of 15 (100%) carriers. The sensitivity was 93 % (40/43). The overall mutation detection rate of hemophilia A was 100% in this study.</p> <p>Conclusion</p> <p>We proposed a diagnostic strategy for hemophilia A genetic diagnosis. We consider HRM as a powerful screening tool that would provide us with a more cost-effective protocol for hemophilia A mutation identification.</p

    Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons

    Get PDF
    Spinal muscular atrophy (SMA) is a neuromuscular disease caused by mutations in Survival Motor Neuron 1 (SMN1), leading to degeneration of alpha motor neurons (MNs) but also affecting other cell types. Induced pluripotent stem cell (iPSC)-derived human MN models from severe SMA patients have shown relevant phenotypes. We have produced and fully characterized iPSCs from members of a discordant consanguineous family with chronic SMA. We differentiated the iPSC clones into ISL-1+/ChAT+ MNs and performed a comparative study during the differentiation process, observing significant differences in neurite length and number between family members. Analyses of samples from wild-type, severe SMA type I and the type IIIa/IV family showed a progressive decay in SMN protein levels during iPSC-MN differentiation, recapitulating previous observations in developmental studies. PLS3 underwent parallel reductions at both the transcriptional and translational levels. The underlying, progressive developmental decay in SMN and PLS3 levels may lead to the increased vulnerability of MNs in SMA disease. Measurements of SMN and PLS3 transcript and protein levels in iPSC-derived MNs show limited value as SMA biomarkers

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS
    corecore