71 research outputs found

    Presence of apoptotic and nonapoptotic disseminated tumor cells reflects the response to neoadjuvant systemic therapy in breast cancer

    Get PDF
    INTRODUCTION: Neoadjuvant systemic therapy (NST) is an established strategy to reduce tumor size in breast cancer patients prior to breast-conserving therapy. The effect of NST on tumor cell dissemination in these patients is not known. The aim of this study was to investigate the incidence of disseminated tumor cells (DTC), including apoptotic DTC, in breast cancer patients after NST, and to investigate the correlation of DTC status with therapy response. METHODS: Bone marrow aspiration was performed in 157 patients after NST. DTC were detected by immunocytochemistry using the A45–B/B3 anticytokeratin antibody. To detect apoptotic DTC the antibody M30 (Roche Diagnostics, Germany) was used, which detects a neo-epitope expressed only after caspase cleavage of cytokeratin 18 during early apoptosis. RESULTS: The incidence of DTC in breast cancer patients was 53% after completion of NST. Tumor dissemination was observed more frequently in patients with no change/progressive disease (69%) than in patients with partial remission or complete remission of the primary tumor (46%) (P < 0.05). Ten out of 24 patients with complete remission, however, were still bone marrow positive. Apoptotic DTC were present in 36 of 157 (23%) breast cancer patients. Apoptotic cells only were detected in 14% of the patients with partial remission or complete remission, but were detected in just 5% of the patients with stable disease. Apoptotic DTC were detectable in none of the patients with tumor progression. CONCLUSION: The pathological therapy response in breast cancer patients is reflected by the presence of apoptotic DTC. Patients with complete remission, however, may still have nonapoptotic DTC. These patients may also benefit from secondary adjuvant therapy

    Recurrence and mortality according to Estrogen Receptor status for breast cancer patients undergoing conservative surgery. Ipsilateral breast tumour recurrence dynamics provides clues for tumour biology within the residual breast

    Get PDF
    BACKGROUND: The study was designed to determine how tumour hormone receptor status affects the subsequent pattern over time (dynamics) of breast cancer recurrence and death following conservative primary breast cancer resection. METHODS: Time span from primary resection until both first recurrence and death were considered among 2825 patients undergoing conservative surgery with or without breast radiotherapy. The hazard rates for ipsilateral breast tumour recurrence (IBTR), distant metastasis (DM) and mortality throughout 10 years of follow-up were assessed. RESULTS: DM dynamics displays the same bimodal pattern (first early peak at about 24 months, second late peak at the sixth-seventh year) for both estrogen receptor (ER) positive (P) and negative (N) tumours and for all local treatments and metastatic sites. The hazard rates for IBTR maintain the bimodal pattern for ERP and ERN tumours; however, each IBTR recurrence peak for ERP tumours is delayed in comparison to the corresponding timing of recurrence peaks for ERN tumours. Mortality dynamics is markedly different for ERP and ERN tumours with more early deaths among patients with ERN than among patients with ERP primary tumours. CONCLUSION: DM dynamics is not influenced by the extent of conservative primary tumour resection and is similar for both ER phenotypes across different metastatic sites, suggesting similar mechanisms for tumour development at distant sites despite apparently different microenvironments. The IBTR risk peak delay observed in ERP tumours is an exception to the common recurrence risk rhythm. This suggests that the microenvironment within the residual breast tissue may enforce more stringent constraints upon ERP breast tumour cell growth than other tissues, prolonging the latency of IBTR. This local environment is, however, apparently less constraining to ERN cells, as IBTR dynamics is similar to the corresponding recurrence dynamics among other distant tissue

    Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study

    Get PDF
    Introduction Some molecular subtypes of breast cancer have preferential sites of distant relapse. The protein expression pattern of the primary tumor may influence the first distant metastasis site. Methods We identified from the files of the Finnish Cancer Registry patients diagnosed with breast cancer in five geographical regions Finland in 1991-1992, reviewed the hospital case records, and collected primary tumor tissue. Out of the 2,032 cases identified, 234 developed distant metastases after a median follow-up time of 2.7 years and had the first metastatic site documented (a total of 321 sites). Primary tumor microarray (TMA) cores were analyzed for 17 proteins using immunohistochemistry and for erbB2 using chromogenic in situ hybridization, and their associations with the first metastasis site were examined. The cancers were classified into luminal A, luminal B, HER2+ enriched, basal-like or non-expressor subtypes. Results A total of 3,886 TMA cores were analyzed. Luminal A cancers had a propensity to give rise first to bone metastases, HER2-enriched cancers to liver and lung metastases, and basal type cancers to liver and brain metastases. Primary tumors that gave first rise to bone metastases expressed frequently estrogen receptor (ER) and SNAI1 (SNAIL) and rarely COX2 and HER2, tumors with first metastases in the liver expressed infrequently SNAI1, those with lung metastases expressed frequently the epidermal growth factor receptor (EGFR), cytokeratin-5 (CK5) and HER2, and infrequently progesterone receptor (PgR), tumors with early skin metastases expressed infrequently E-cadherin, and breast tumors with first metastases in the brain expressed nestin, prominin-1 and CK5 and infrequently ER and PgR. Conclusions Breast tumor biological subtypes have a tendency to give rise to first distant metastases at certain body sites. Several primary tumor proteins were associated with homing of breast cancer cells.BioMed Central Open acces

    HER2 status of bone marrow micrometastasis and their corresponding primary tumours in a pilot study of 27 cases: a possible tool for anti-HER2 therapy management?

    Get PDF
    Discrepancies have been reported between HER2 status in primary breast cancer and micrometastatic cells in bone marrow. The aim of this study was to assess HER2 gene status in micrometastatic cells in bone marrow and corresponding primary tumour. Micrometastatic cells were detected in bone marrow aspirations in a prospective series of 27 breast cancer patients by immunocytochemistry (pancytokeratin antibody). HER2 status of micrometastatic cells was assessed by fluorescence in situ hybridisation (FISH), respectively in 24 out of 27. Primary tumour HER2 status was assessed by immunohistochemistry (CB11 antibody) and by FISH in 20 out of 27 of the cases. HER2 was amplified or overexpressed in five out of 27 (18.5%) primary tumours and in four out of 27 (15%) micrometastatic cells. In two cases, HER2 was overexpressed and amplified in primary tumour, but not in micrometastatic cells, whereas, in one case, HER2 presented a low amplification rate (six copies) in micrometastatic cells not found in the primary tumour. We demonstrated that negative and positive HER2 status remained, in the majority of the cases, stable between the bone marrow micrometastasis and the primary tumour. Therefore, the efficiency of anti-HER2 adjuvant therapy could be evaluated, in a clinical trial, by sequential detection of HER2-positive micrometastatic cells within the bone marrow, before and after treatment
    corecore