20 research outputs found

    Characteristics of HIV-1 Discordant Couples Enrolled in a Trial of HSV-2 Suppression to Reduce HIV-1 Transmission: The Partners Study

    Get PDF
    Background: The Partners HSV-2/HIV-1 Transmission Study (Partners Study) is a phase III, placebo-controlled trial of daily acyclovir for genital herpes (HSV-2) suppression among HIV-1/HSV-2 co-infected persons to reduce HIV-1 transmission to their HIV-1 susceptible partners, which requires recruitment of HIV-1 serodiscordant heterosexual couples. We describe the baseline characteristics of this cohort. Methods: HIV-1 serodiscordant heterosexual couples, in which the HIV-1 infected partner was HSV-2 seropositive, had a CD4 count ≥250 cells/mcL and was not on antiretroviral therapy, were enrolled at 14 sites in East and Southern Africa. Demographic, behavioral, clinical and laboratory characteristics were assessed. Results: Of the 3408 HIV-1 serodiscordant couples enrolled, 67% of the HIV-1 infected partners were women. Couples had cohabitated for a median of 5 years (range 2–9) with 28% reporting unprotected sex in the month prior to enrollment. Among HIV-1 susceptible participants, 86% of women and 59% of men were HSV-2 seropositive. Other laboratory-diagnosed sexually transmitted infections were uncommon (500 relative to <350, respectively, p<0.001). Conclusions: The Partners Study successfully enrolled a cohort of 3408 heterosexual HIV-1 serodiscordant couples in Africa at high risk for HIV-1 transmission. Follow-up of this cohort will evaluate the efficacy of acyclovir for HSV-2 suppression in preventing HIV-1 transmission and provide insights into biological and behavioral factors determining heterosexual HIV-1 transmission. Trial Registration ClinicalTrials.gov NCT0019451

    Proposal for Using a Studio Format to Enhance Institutional Advancement

    Get PDF
    Universities today need to become quicker on their toes. They must continually scan the environment and seize emerging opportunities – and institutional advancement must lead this effort. An unfortunate number of institutional advancement operations are ill equipped for the task at hand. Many suffer from high staff turnover and overly hierarchical systems that refl ect excessive fragmentation and compartmentalization. They inadvertently perpetuate stifl ing and unnecessary bureaucracy. Organizing advancement efforts around the metaphor of the design studio or creative workshop promises to (a) pool talent, (b) cultivate collaboration, and (c) align diverse but related interests in order to promote fruitful advancement. By shifting the way personnel and leaders conceptualize their work, institutional advancement can overcome a number of challenges that currently hinder its efforts. The Institutional Advancement Atelier described in this paper can improve advancement ’ s overall productivity and its ability to see and harness opportunities in a quickly changing environment – and increase employee satisfaction in the process

    Computers and Geography: From Automated Geography to Digital Earth

    No full text

    Experimental Characterization of Adventitial Collagen Fiber Kinematics Using Second-Harmonic Generation Imaging Microscopy: Similarities and Differences Across Arteries, Species and Testing Conditions

    No full text
    International audienceFibrous collagen networks are well known to play a central role in the passive biomechanical response of soft connective tissues to applied loads. In the current chapter we focus on vascular tissues and share our extensive experience in coupling mechanical loading and multi-photon imaging to investigate, across arteries, species and testing conditions, how collagen fibers move in response to mechanical loading. More specifically, we assess the deformations of collagen networks in rabbit, porcine or human arteries under different loading scenarios: uniaxial tension on flat samples, tension-inflation on tubular samples, bulge inflation on flat samples. We always observe that collagen fibers exhibit a wavy or crimped shape in load-free conditions, and tend to uncrimp when loads are applied, engaging sequentially to become the main load-bearing component. This sequential engagement, which is responsible for the nonlinear mechanical behaviour, is essential for an artery to function normally and appears to be less pronounced for arteries in elderly and aneurysmal patients. Although uncrimping of collagen fibers is a universal mechanism, we also observe large fiber rotations specific to tensile loading, with significant realignment along the loading axis. A unified approach is proposed to compare observations and quantitative analyses as the type of image processing may affect significantly the estimation of collagen fiber deformations. In summary, this chapter makes an important review of the basic roles of arterial microstructure and its deformations on the global mechanical response. Eventually, directions for future studies combining mechanical loading and multi-photon imaging are suggested, with the aim of addressing open questions related to tissue adaptation and rupture
    corecore