28 research outputs found

    The Mass Function of Newly Formed Stars (Review)

    Full text link
    The topic of the stellar "original mass function" has a nearly 50 year history,dating to the publication in 1955 of Salpeter's seminal paper. In this review I discuss the many more recent results that have emerged on the initial mass function (IMF), as it is now called, from studies over the last decade of resolved populations in star forming regions and young open clusters.Comment: 9 pages, 1 figure; to appear in "The Dense Instellar Medium in Galaxies -- 4'th Cologne-Bonn-Zermatt-Symposium" editted by S. Pfalzner, C. Kramer, C. Straubmeier and A. Heithausen, Springer-Verlag (2004

    Dendritic cell density and activation status in human breast cancer – CD1a, CMRF-44, CMRF-56 and CD-83 expression

    Get PDF
    Low CD1a-positive putative dendritic cell numbers in human breast cancer has recently been described and may explain the apparent ‘poor immunogenicity’ previously reported in breast cancer. Little attention has been given to dendritic cell activation within the tumour microenvironment, which is another reason why the in-situ immune response may be severely deficient. We have therefore examined CD1a expression as a marker for dendritic cells, together with CMRF-44 and -56 as markers of dendritic cell activation status, in 40 human breast cancers. The results demonstrate few or no CD1a-positive putative dendritic cells and minimal or no expression of the dendritic cell activation markers. Both dendritic cell number and dendritic cell activation appear substantially deficient in human breast cancers, regardless of tumour histological grade

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Changes in immunocompetent cells after interstitial laser thermotherapy of breast cancer

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.BACKGROUND: Local tumour destruction has been shown to give rise to changes in immunocompetent cells. The aim of this study was to describe the effect of interstitial laser thermotherapy (ILT) of breast carcinoma in the tumour and in regional lymph nodes. METHODS: Seventeen women that underwent radical surgical excision after non-radical ILT were studied. ILT was performed at a steady-state temperature of 48°C for 30 min. Surgical excision was performed 12 (6-23) days after ILT. Six patients with breast cancer not treated with ILT before surgery served as controls. Immunohistological reactions were performed on core needle biopsies prior to treatment and on the excised specimens. RESULTS: ILT resulted in more CD8 lymphocytes and CD68 macrophages within the tumour (P < 0.05 and P < 0.01, respectively) and higher counts of CD20 (P < 0.05), CD68 (P < 0.001) and CD83 (P < 0.01) at the tumour border, when compared to pre-treatment values. In the control patients not receiving ILT, CD8 cells increased within the tumour after resection (P < 0.05). With the probable exception of CD25 Foxp3 cells, the presence of cancer in a lymph node influenced the findings in lymph nodes (examined for CD1a, CD25, Foxp3 CD25, CD83 cells). Thus, comparisons between ILT and control patients were restricted to patients without lymph node metastases. In these patients, ILT and resection were followed by a decrease in CD25 Foxp3 lymphocytes (P < 0.05), when compared to surgical resection alone. CONCLUSIONS: ILT induced changes in immunocompetent cells in patients with breast cancer. The stimulation of the immune system is an added feature of ILT in treatment of patients with breast cancer

    CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer

    Get PDF
    © Churchill LivingstoneInfiltrating CD1a+ dendritic cells (DCs) have been associated with increased survival in a number of human cancers. This study investigated DC infiltration within breast cancers and the association with survival. Classical established prognostic factors, of tumour size, lymph node status, histological grade, lympho-vascular invasion, the KI-67 (MIB-1) fraction and the Nottingham Prognostic Index (NPI) were also compared. A total of 48 breast cancer patients were followed from the time of surgery and CD1a density analysis for 5 years or until death. Our data set validated previous studies, which show a relationship between survival and the NPI (P<0.001), tumour size (P<0.01) and lymph node status (P<0.05). Although more patients were alive at the 5-year time point in the group with higher CD1a DC density than the lower CD1a DC group, this failed to reach statistical significance at the P=0.05 level. Analysis at 10 years postsurgery is required to investigate the association further.B.J.Coventry and J. Morto

    Low-mass and sub-stellar eclipsing binaries in stellar clusters

    Full text link
    We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.Comment: 30 pages, 5 figures, no table. Review pape

    Relativistic Dynamics and Extreme Mass Ratio Inspirals

    Full text link
    It is now well-established that a dark, compact object (DCO), very likely a massive black hole (MBH) of around four million solar masses is lurking at the centre of the Milky Way. While a consensus is emerging about the origin and growth of supermassive black holes (with masses larger than a billion solar masses), MBHs with smaller masses, such as the one in our galactic centre, remain understudied and enigmatic. The key to understanding these holes - how some of them grow by orders of magnitude in mass - lies in understanding the dynamics of the stars in the galactic neighbourhood. Stars interact with the central MBH primarily through their gradual inspiral due to the emission of gravitational radiation. Also stars produce gases which will subsequently be accreted by the MBH through collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the MBH and progress in understanding them requires theoretical work in preparation for future gravitational radiation millihertz missions and X-ray observatories. In particular, a unique probe of these regions is the gravitational radiation that is emitted by some compact stars very close to the black holes and which could be surveyed by a millihertz gravitational wave interferometer scrutinizing the range of masses fundamental to understanding the origin and growth of supermassive black holes. By extracting the information carried by the gravitational radiation, we can determine the mass and spin of the central MBH with unprecedented precision and we can determine how the holes "eat" stars that happen to be near them.Comment: Update from the first version, 151 pages, accepted for publication @ Living Reviews in Relativit
    corecore