411 research outputs found

    Alginate encapsulation to enhance biopreservation scope and success: a multidisciplinary review of current ideas and applications in cryopreservation and non-freezing storage

    Get PDF
    BACKGROUND: The development of encapsulation technologies has played an important role in improving cryopreservation outcomes for many cell and tissue types over the past 20 years. Alginate encapsulation cryopreservation (AECryo) has been incorporated into a range of applications in biotechnology, species conservation and clinical therapies, using cells from many different phyla, including higher plants, animal and human cells. This review describes the background to the origins of AECryo, the development of AECryo in higher plant tissues, broadening to current applications in algal conservation, the roles for AECryo in preserving phytodiversity, fungal species and in animal and human cells. OBJECTIVE: The main aims are to provide information resources on AECryo in different areas of biology and to stimulate new ideas for wider applications and future improvement. The translation of this useful biopreservation strategy into new opportunities for cell cryopreservation and storage at non-freezing temperatures are also discussed

    Massive stars as thermonuclear reactors and their explosions following core collapse

    Full text link
    Nuclear reactions transform atomic nuclei inside stars. This is the process of stellar nucleosynthesis. The basic concepts of determining nuclear reaction rates inside stars are reviewed. How stars manage to burn their fuel so slowly most of the time are also considered. Stellar thermonuclear reactions involving protons in hydrostatic burning are discussed first. Then I discuss triple alpha reactions in the helium burning stage. Carbon and oxygen survive in red giant stars because of the nuclear structure of oxygen and neon. Further nuclear burning of carbon, neon, oxygen and silicon in quiescent conditions are discussed next. In the subsequent core-collapse phase, neutronization due to electron capture from the top of the Fermi sea in a degenerate core takes place. The expected signal of neutrinos from a nearby supernova is calculated. The supernova often explodes inside a dense circumstellar medium, which is established due to the progenitor star losing its outermost envelope in a stellar wind or mass transfer in a binary system. The nature of the circumstellar medium and the ejecta of the supernova and their dynamics are revealed by observations in the optical, IR, radio, and X-ray bands, and I discuss some of these observations and their interpretations.Comment: To be published in " Principles and Perspectives in Cosmochemistry" Lecture Notes on Kodai School on Synthesis of Elements in Stars; ed. by Aruna Goswami & Eswar Reddy, Springer Verlag, 2009. Contains 21 figure

    The development of a body comparison measure: the CoSS

    Get PDF
    Purpose This study reports on the development and validation of a brief and widely applicable measure of body comparison (the Comparison of Self-Scale—CoSS), which is a maintaining feature of eating disorders. Methods A sample of 412 adults completed the CoSS, an existing measure of aspects of body comparison, and eating pathology and associated states. Test–retest reliability was examined over 2 weeks. Results Exploratory factor analysis showed that 22 CoSS items loaded onto two factors, resulting in two scales—Appearance Comparison and Social Comparison—with strong internal consistency and test–retest reliability. Conclusions In clinical terms, the CoSS was superior to the existing measure of body comparison in accounting for depression and anxiety. Given that it is a relatively brief measure, the CoSS could be useful in the routine assessment of body comparison, and in formulating and treating individuals with body image concerns. However, the measure awaits full clinical validation

    Weighted gene coexpression network analysis strategies applied to mouse weight

    Get PDF
    Systems-oriented genetic approaches that incorporate gene expression and genotype data are valuable in the quest for genetic regulatory loci underlying complex traits. Gene coexpression network analysis lends itself to identification of entire groups of differentially regulated genes—a highly relevant endeavor in finding the underpinnings of complex traits that are, by definition, polygenic in nature. Here we describe one such approach based on liver gene expression and genotype data from an F2 mouse intercross utilizing weighted gene coexpression network analysis (WGCNA) of gene expression data to identify physiologically relevant modules. We describe two strategies: single-network analysis and differential network analysis. Single-network analysis reveals the presence of a physiologically interesting module that can be found in two distinct mouse crosses. Module quantitative trait loci (mQTLs) that perturb this module were discovered. In addition, we report a list of genetic drivers for this module. Differential network analysis reveals differences in connectivity and module structure between two networks based on the liver expression data of lean and obese mice. Functional annotation of these genes suggests a biological pathway involving epidermal growth factor (EGF). Our results demonstrate the utility of WGCNA in identifying genetic drivers and in finding genetic pathways represented by gene modules. These examples provide evidence that integration of network properties may well help chart the path across the gene–trait chasm

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    High-Resolution Mapping of Gene Expression Using Association in an Outbred Mouse Stock

    Get PDF
    Quantitative trait locus (QTL) analysis is a powerful tool for mapping genes for complex traits in mice, but its utility is limited by poor resolution. A promising mapping approach is association analysis in outbred stocks or different inbred strains. As a proof of concept for the association approach, we applied whole-genome association analysis to hepatic gene expression traits in an outbred mouse population, the MF1 stock, and replicated expression QTL (eQTL) identified in previous studies of F2 intercross mice. We found that the mapping resolution of these eQTL was significantly greater in the outbred population. Through an example, we also showed how this precise mapping can be used to resolve previously identified loci (in intercross studies), which affect many different transcript levels (known as eQTL “hotspots”), into distinct regions. Our results also highlight the importance of correcting for population structure in whole-genome association studies in the outbred stock

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    A psycho-Geoinformatics approach for investigating older adults’ driving behaviours and underlying cognitive mechanisms

    Get PDF
    Introduction: Safe driving constantly challenges the driver’s ability to respond to the dynamic traffic scene under space and time constraints. It is of particular importance for older drivers to perform sufficient visual and motor actions with effective coordination due to the fact of age-related cognitive decline. However, few studies have been able to integrate drivers’ visual-motor behaviours with environmental information in a spatial-temporal context and link to the cognitive conditions of individual drivers. Little is known about the mechanisms that underpin the deterioration in visual-motor coordination of older drivers. Development: Based on a review of driving-related cognitive decline in older adults and the context of driver-vehicle-environment interactions, this paper established a conceptual framework to identify the parameters of driver’s visual and motor behaviour, and reveal the cognitive process from visual search to vehicle control in driving. The framework led to a psycho-geoinformatics approach to measure older drivers’ driving behaviours and investigate the underlying cognitive mechanisms. The proposed data collection protocol and the analysis and assessments depicted the psycho-geoinformatics approach on obtaining quantified variables and the key means of analysis, as well as outcome measures. Conclusions: Recordings of the driver and their interactions with the vehicle and environment at a detailed scale give a closer assessment of the driver’s behaviours. Using geoinformatics tools in driving behaviours assessment opens a new era of research with many possible analytical options, which do not have to rely on human observations. Instead, it receives clear indicators of the individual drivers’ interactions with the vehicle and the traffic environment. This approach should make it possible to identify lower-performing older drivers and problematic visual and motor behaviours, and the cognitive predictors of risky driving behaviours. A better targeted regulation and tailored intervention programs for older can be developed by further research

    Recent and Projected Increases in Atmospheric CO2 Concentration Can Enhance Gene Flow between Wild and Genetically Altered Rice (Oryza sativa)

    Get PDF
    Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO2 between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO2 from an early 20th century concentration (300 µmol mol−1) to current (400 µmol mol−1) and projected, mid-21st century (600 µmol mol−1) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol−1. The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO2 also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO2 could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems
    corecore