46 research outputs found

    “Working the System”—British American Tobacco's Influence on the European Union Treaty and Its Implications for Policy: An Analysis of Internal Tobacco Industry Documents

    Get PDF
    Katherine Smith and colleagues investigate the ways in which British American Tobacco influenced the European Union Treaty so that new EU policies advance the interests of major corporations, including those that produce products damaging to health

    Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest

    Get PDF
    Improved understanding of the nutritional ecology of arbuscular mycorrhizal (AM) fungi is important in understanding how tropical forests maintain high productivity on low-fertility soils. Relatively little is known about how AM fungi will respond to changes in nutrient inputs in tropical forests, which hampers our ability to assess how forest productivity will be influenced by anthropogenic change. Here we assessed the influence of long-term inorganic and organic nutrient additions and nutrient depletion on AM fungi, using two adjacent experiments in a lowland tropical forest in Panama. We characterised AM fungal communities in soil and roots using 454-pyrosequencing, and quantified AM fungal abundance using microscopy and a lipid biomarker. Phosphorus and nitrogen addition reduced the abundance of AM fungi to a similar extent, but affected community composition in different ways. Nutrient depletion (removal of leaf litter) had a pronounced effect on AM fungal community composition, affecting nearly as many OTUs as phosphorus addition. The addition of nutrients in organic form (leaf litter) had little effect on any AM fungal parameter. Soil AM fungal communities responded more strongly to changes in nutrient availability than communities in roots. This suggests that the 'dual niches' of AM fungi in soil versus roots are structured to different degrees by abiotic environmental filters, and biotic filters imposed by the plant host. Our findings indicate that AM fungal communities are fine-tuned to nutrient regimes, and support future studies aiming to link AM fungal community dynamics with ecosystem function

    Agricultural uses of plant biostimulants

    Get PDF

    TRPM5-expressing microvillous cells in the main olfactory epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main olfactory epithelium (MOE) in the nasal cavity detects a variety of air borne molecules that provide information regarding the presence of food, predators and other relevant social and environmental factors. Within the epithelium are ciliated sensory neurons, supporting cells, basal cells and microvillous cells, each of which is distinct in morphology and function. Arguably, the least understood, are the microvillous cells, a population of cells that are small in number and whose function is not known. We previously found that in a mouse strain in which the TRPM5 promoter drives expression of the green fluorescent protein (GFP), a population of ciliated olfactory sensory neurons (OSNs), as well as a population of cells displaying microvilli-like structures is labeled. Here we examined the morphology and immunocytochemical properties of these microvillous-like cells using immunocytochemical methods.</p> <p>Results</p> <p>We show that the GFP-positive microvillous cells were morphologically diversified and scattered throughout the entire MOE. These cells immunoreacted to an antibody against TRPM5, confirming the expression of this ion channel in these cells. In addition, they showed a Ca<sup>2+</sup>-activated non-selective cation current in electrophysiological recordings. They did not immunoreact to antibodies that label cell markers and elements of the transduction pathways from olfactory sensory neurons and solitary chemosensory cells of the nasal cavity. Further, the TRPM5-expressing cells did not display axon-like processes and were not labeled with a neuronal marker nor did trigeminal peptidergic nerve fibers innervate these cells.</p> <p>Conclusion</p> <p>We provide morphological and immunocytochemical characterization of the TRPM5-expressing microvillous cells in the main olfactory epithelium. Our data demonstrate that these cells are non-neuronal and in terms of chemosensory transduction do not resemble the TRPM5-expressing olfactory sensory neurons and nasal solitary chemosensory cells.</p
    corecore