1,720 research outputs found

    Captured at the Cape: The Enslaved Africans Aboard Bom Caminho

    Get PDF

    Evaluating the demand side: New challenges for evaluation

    Get PDF
    Evaluation of research and innovation policy faces radical challenges arising from a new policy emphasis upon demand-side measures and linked to this an understanding of innovation policy as a means to achieve societal goals. This article considers the implications for the practice of evaluation at both micro and meso-levels. It uses the exemplar of an evaluation design for the European Union's Lead Market Initiative to expose the extent to which classical approaches to evaluation are valid and where new issues arise. Some problems highlighted include the difficulty of establishing a relevant baseline, the inability of public statistics constructed in supply-side mode to capture actions, the need to engage with actors who do not necessarily see themselves as part of the initiative being evaluated, long timescales and potential wide geographical scope, measures that span from micro to macro, and blurred boundaries between implementation and impact. It is concluded that there is a key role for evaluators to become involved in co-learning and co-evolution of these policy instruments in a manner analogous to the relationship between evaluation and policy development that characterized the emergence of collaborative R&D support programmes

    Pickering emulsions stabilized by naturally derived or biodegradable particles

    Get PDF
    Emulsions are used widely in formulated consumer products, paints and coatings, foods, and pharmaceutical preparations to name just a few examples. Frequently surfactants are employed as emulsifiers, but the use of particles, including nanoparticles, can offer advantages. Naturally derived, or synthetic, particles that are biodegradable can reduce end-of-life environmental impact, while offering advantages such as lack of irritancy in use (e.g., on skin) and, in some cases, the use of particle supported Pickering emulsions may provide more environmentally friendly processes (e.g., biphasic catalysis mitigating use of solvents) or environmental cleanup solutions (e.g., oil spill dispersion). Here we review four classes of (nano)particles that can be employed as Pickering emulsion stabilizers: minerals, polysaccharides, synthetic polymers and proteins.</p

    Anomalous buoyancy of quantum bubbles in immiscible Bose mixtures

    Get PDF
    Buoyancy is a well-known effect in immiscible binary Bose-Einstein condensates. Depending on the differential confinement experienced by the two components, a bubble of one component sitting at the center of the other eventually floats to the surface, around which it spreads either totally or partially. We discuss how quantum fluctuations may significantly change the volume and position of immiscible bubbles. We consider the particular case of two miscible components, forming a pseudo-scalar bubble condensate with enhanced quantum fluctuations (quantum bubble), immersed in a bath provided by a third component, with which they are immiscible. We show that in such a peculiar effective binary mixture, quantum fluctuations change the equilibrium of pressures that define the bubble volume and modify as well the criterion for buoyancy. Once buoyancy sets in, in contrast to the mean-field case, quantum fluctuations may place the bubble at an intermediate position between the center and the surface. At the surface, the quantum bubble may transition into a floating self-bound droplet.Comment: 8 pages, 5 figure

    Behavioral and neurochemical studies of inherited manganese-induced dystonia-parkinsonism in Slc39a14-knockout mice

    Get PDF
    Inherited autosomal recessive mutations of the manganese (Mn) transporter gene SLC39A14 in humans, results in elevated blood and brain Mn concentrations and childhood-onset dystonia-parkinsonism. The pathophysiology of this disease is unknown, but the nigrostriatal dopaminergic system of the basal ganglia has been implicated. Here, we describe pathophysiological studies in Slc39a14-knockout (KO) mice as a preclinical model of dystonia-parkinsonism in SLC39A14 mutation carriers. Blood and brain metal concentrations in Slc39a14-KO mice exhibited a pattern similar to the human disease with highly elevated Mn concentrations. We observed an early-onset backward-walking behavior at postnatal day (PN) 21 which was also noted in PN60 Slc39a14-KO mice as well as dystonia-like movements. Locomotor activity and motor coordination were also impaired in Slc39a14-KO relative to wildtype (WT) mice. From a neurochemical perspective, striatal dopamine (DA) and metabolite concentrations and their ratio in Slc39a14-KO mice did not differ from WT. Striatal tyrosine hydroxylase (TH) immunohistochemistry did not change in Slc39a14-KO mice relative to WT. Unbiased stereological cell quantification of TH-positive and Nissl-stained estimated neuron number, neuron density, and soma volume in the substantia nigra pars compacta (SNc) was the same in Slc39a14-KO mice as in WT. However, we measured a marked inhibition (85–90%) of potassium-stimulated DA release in the striatum of Slc39a14-KO mice relative to WT. Our findings indicate that the dystonia-parkinsonism observed in this genetic animal model of the human disease is associated with a dysfunctional but structurally intact nigrostriatal dopaminergic system. The presynaptic deficit in DA release is unlikely to explain the totality of the behavioral phenotype and points to the involvement of other neuronal systems and brain regions in the pathophysiology of the disease

    Continuous rotary membrane emulsification for the production of sustainable Pickering emulsions

    Get PDF
    A continuous rotary membrane emulsification (cRME) system, allowing the decoupling of droplet generation from continuous phase (CP) flowrate, is presented here for the first time. The decoupling results in higher productivity and greater control compared to traditional crossflow and rotational membrane emulsification processes. A design of experiment (DoE) investigated the influence on droplet formation of CP flow, membrane rotational speed and emulsion composition, using a Pickering emulsion consisting of 1 wt% keratin solution and varying concentrations of oxidised cellulose nanofibrils. Experiments showed that CP flowrate had a negligible effect on droplet diameters in a wide range (between 78 and 241 µm), with uniformity index as low as 0.14 for optimal membrane rotational speeds and different oxidised cellulose nanofibrils (OCNF) concentration. cRME has the potential to overcome low emulsion concentration limitations of continuous membrane emulsification systems, paving the way to significantly increase the productivity and application in personal care, food and drugs industries.</p

    Keratin-Chitosan Microcapsules via Membrane Emulsification and Interfacial Complexation

    Get PDF
    [Image: see text] The continuous fabrication via membrane emulsification of stable microcapsules using renewable, biodegradable biopolymer wall materials keratin and chitosan is reported here for the first time. Microcapsule formation was based on opposite charge interactions between keratin and chitosan, which formed polyelectrolyte complexes when solutions were mixed at pH 5.5. Interfacial complexation was induced by transfer of keratin-stabilized primary emulsion droplets to chitosan solution, where the deposition of chitosan around droplets formed a core–shell structure. Capsule formation was demonstrated both in batch and continuous systems, with the latter showing a productivity up to 4.5 million capsules per minute. Keratin–chitosan microcapsules (in the 30–120 μm range) released less encapsulated nile red than the keratin-only emulsion, whereas microcapsules cross-linked with glutaraldehyde were stable for at least 6 months, and a greater amount of cross-linker was associated with enhanced dye release under the application of force due to increased shell brittleness. In light of recent bans involving microplastics in cosmetics, applications may be found in skin-pH formulas for the protection of oils or oil-soluble compounds, with a possible mechanical rupture release mechanism (e.g., rubbing on skin)

    Reduction in Left Frontal Alpha Oscillations by Transcranial Alternating Current Stimulation in Major Depressive Disorder Is Context Dependent in a Randomized Clinical Trial

    Get PDF
    BACKGROUND: Left frontal alpha oscillations are associated with decreased approach motivation and have been proposed as a target for noninvasive brain stimulation for the treatment of depression and anhedonia. Indeed, transcranial alternating current stimulation (tACS) at the alpha frequency reduced left frontal alpha power and was associated with a higher response rate than placebo stimulation in patients with major depressive disorder (MDD) in a recent double-blind, placebo-controlled clinical trial. METHODS: In this current study, we aimed to replicate successful target engagement by delineating the effects of a single session of bifrontal tACS at the individualized alpha frequency (IAF-tACS) on alpha oscillations in patients with MDD. Eighty-four participants were randomized to receive verum or sham IAF-tACS. Electrical brain activity was recorded during rest and while viewing emotionally salient images before and after stimulation to investigate whether the modulation of alpha oscillation by tACS exhibited specificity with regard to valence. RESULTS: In agreement with the previous study of tACS in MDD, we found that a single session of bifrontal IAF-tACS reduced left frontal alpha power during the resting state when compared with placebo. Furthermore, the reduction of left frontal alpha oscillation by tACS was specific for stimuli with positive valence. In contrast, these effects on left frontal alpha power were not found in healthy control participants. CONCLUSIONS: Together, these results support an important role of tACS in reducing left frontal alpha oscillations as a future treatment for MDD
    • …
    corecore