10 research outputs found

    How do African grey parrots (Psittacus erithacus) perform on a delay of gratification task?

    Get PDF
    Humans and other animals often find it difficult to choose a delayed reward over an immediate one, even when the delay leads to increased pay-offs. Using a visible incremental reward procedure, we tested the ability of three grey parrots to maintain delay of gratification for an increasingly valuable food pay-off. Up to 5 sunflower seeds were placed within the parrot’s reach, one at a time, at a rate of 1 seed per second. When the parrot took a seed the trial was ended and the birds consumed the accumulated seeds. Parrots were first tested in daily sessions of 10 trials and then with single daily trials. For multiple trial sessions, all three parrots showed some limited improvement across 30 sessions. For single trial sessions, only one parrot showed any increase in seed acquisition across trials. This parrot was also able to consistently obtain two or more seeds per trial (across both multiple and single trial conditions) but was unable to able to wait 5 seconds to obtain the maximum number of seeds. This parrot was also tested on a slower rate of seed presentation, and this significantly reduced her mean seed acquisition in both multiple and single trial conditions, suggesting that both value of reward available and delay duration impact upon self-control. Further manipulation of both the visibility and proximity of seeds during delay maintenance had little impact upon tolerance of delays for both parrots tested in this condition. This task demanded not just a choice of delayed reward but the maintenance of delayed gratification and was clearly difficult for the parrots to learn; additional training or alternative paradigms are required to better understand the capacity for self-control in this species

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Leber

    No full text

    Electron Microscopic Methods in Membrane Biology

    No full text
    corecore