64 research outputs found

    Keeping pace with marine heatwaves

    Get PDF
    Marine heatwaves (MHWs) are prolonged extreme oceanic warm water events. They can have devastating impacts on marine ecosystems — for example, causing mass coral bleaching and substantial declines in kelp forests and seagrass meadows — with implications for the provision of ecological goods and services. Effective adaptation and mitigation efforts by marine managers can benefit from improved MHW predictions, which at present are inadequate. In this Perspective, we explore MHW predictability on short-term, interannual to decadal, and centennial timescales, focusing on the physical processes that offer prediction. While there may be potential predictability of MHWs days to years in advance, accuracy will vary dramatically depending on the regions and drivers. Skilful MHW prediction has the potential to provide critical information and guidance for marine conservation, fisheries and aquaculture management. However, to develop effective prediction systems, better understanding is needed of the physical drivers, subsurface MHWs, and predictability limits

    A global assessment of marine heatwaves and their drivers

    Get PDF
    Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies

    Natural hazards in Australia: heatwaves

    Get PDF
    As part of a special issue on natural hazards, this paper reviews the current state of scientific knowledge of Australian heatwaves. Over recent years, progress has been made in understanding both the causes of and changes to heatwaves. Relationships between atmospheric heatwaves and large-scale and synoptic variability have been identified, with increasing trends in heatwave intensity, frequency and duration projected to continue throughout the 21st century. However, more research is required to further our understanding of the dynamical interactions of atmospheric heatwaves, particularly with the land surface. Research into marine heatwaves is still in its infancy, with little known about driving mechanisms, and observed and future changes. In order to address these knowledge gaps, recommendations include: focusing on a comprehensive assessment of atmospheric heatwave dynamics; understanding links with droughts; working towards a unified measurement framework; and investigating observed and future trends in marine heatwaves. Such work requires comprehensive and long-term collaboration activities. However, benefits will extend to the international community, thus addressing global grand challenges surrounding these extreme events
    • …
    corecore