15 research outputs found

    Latitudinal diversity gradients in New World bats: are they a consequence of niche conservatism?

    Get PDF
    The increase in species diversity from the Poles to the Equator is a major biogeographic pattern, but the mechanisms underlying it remain obscure. Our aim is to contribute to their clarification by describing the latitudinal gradients in species richness and in evolutionary age of species of New World bats, and testing if those patterns may be explained by the niche conservatism hypothesis. Maps of species ranges were used to estimate species richness in a 100 x 100 km grid. Root distances in a molecular phylogeny were used as a proxy for the age of species, and the mean root distance of the species in each cell of the grid was estimated. Generalised additive models were used to relate latitude with both species richness and mean root distance. This was done for each of the three most specious bat families and for all Chiroptera combined. Species richness increases towards the Equator in the whole of the Chiroptera and in the Phyllostomidae and Molossidae, families that radiated in the tropics, but the opposite trend is observed in the Vespertilionidae, which has a presumed temperate origin. In the whole of the Chiroptera, and in the three main families, there were more basal species in the higher latitudes, and more derived species in tropical areas. In general, our results were not consistent with the predictions of niche conservatism. Tropical niche conservatism seems to keep bat clades of tropical origin from colonizing temperate zones, as they lack adaptations to survive cold winters, such as the capacity to hibernate. However, the lower diversity of Vespertilionidae in the Neotropics is better explained by competition with a diverse pre-existing community of bats than by niche conservatism.MJRP was supported by Foundation for Science and Technology, Portugal (www.fct.pt), fellowship SFRH/BD/19620/2004 and SFRH/BPD/ 72845/2010. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank J. P. Granadeiro and R. Lemos for advice on statistical methods, J. A. Diniz-Filho for support with SAM software, and M. A. Dias and P. E. Cardoso for help with the distributional maps. O. R. P. Bininda-Emonds kindly gave us access to the Chiroptera species-level phylogeny. Bat data was provided by NatureServe in collaboration with Bruce Patterson, Wes Sechrest, Marcelo Tognelli, Gerardo Ceballos, the Nature Conservancy-Migratory Bird Program, Conservation International-CABS, World Wildlife Fund-US, and Environment Canada-WILDSPACE - http://www.natureserve.org/infonatura.publishe

    Severe malaria is associated with a deficiency of von Willebrand factor cleaving protease, ADAMTS13.

    No full text
    Severe falciparum malaria remains a major killer in tropical countries. Central in the pathophysiology is mechanical obstruction in the microcirculation caused by cytoadherence and sequestration of parasitized erythrocytes. However, the pathogenesis of many features complicating severe malaria, including coma, renal failure and thrombocytopenia, remains incompletely understood. These disease manifestations are also key features of thrombotic thrombocytopenic purpura, a life-threatening disease strongly associated with a deficiency of the von Willebrand factor (VWF) cleaving protease, ADAMTS13. We measured plasma ADAMTS13 activity, VWF antigen and VWF propeptide levels in 30 patients with severe falciparum malaria, 12 patients with uncomplicated falciparum malaria and 14 healthy Bangladeshi controls. In patients with severe malaria ADAMTS13 activity levels were markedly decreased in comparison to normal controls (mean [95%CI]: 23% [20-26] vs. 64% [55-72]) and VWF antigen and propeptide concentrations were significantly elevated (VWF antigen: 439% [396-481] vs. 64% [46-83]; VWF propeptide: 576% [481-671] vs. 69% [59-78]). In uncomplicated malaria VWF levels were also increased compared to healthy controls but ADAMTS13 activity was normal. The results suggest that decreased ADAMTS13 activity in combination with increased VWF concentrations may contribute to the complications in severe malaria

    Symmetrische Pseudokalk- und Kalkablagerungen im Gehirn

    No full text

    Neurologic Complications of Hematopoietic Stem Cell Transplantation

    No full text
    corecore