1,111 research outputs found

    Silicon carbide particulates incorporated into microalloyed steel surface using TIG: microstructure and properties

    Get PDF
    Surface metal matrix composites have been developed to enhance properties such as erosion, wear and corrosion of alloys. In this study, ~5 µm or ~75 µm SiC particulates were preplaced on a microalloyed steel. Single track surface zones were melted by a tungsten inert gas torch, and the effect of two heat inputs, 420Jmm-1 and 840 Jmm-1,compared. The results showed that the samples melted using 420Jmm-1 were crack-free. Pin-on-disk wear testing under dry sliding conditions were conducted. The effects of load and sliding velocity were used to characterise the performance of the crack-free samples. Microstructural and X-ray diffraction studies of the surface showed that the SiC had dissolved, and that martensite, was the main phase influencing the hardness

    Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration.</p> <p>Methods</p> <p>We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA.</p> <p>Result</p> <p>We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I.</p> <p>Conclusions</p> <p>Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells.</p

    Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this retrospective study was to evaluate the efficacy of stereotactic body radiation therapy (SBRT) for small non-resectable hepatocellular carcinoma (HCC) and SBRT combined with transarterial chemoembolization (TACE) for advanced HCC with portal vein tumor thrombosis (PVTT).</p> <p>Methods</p> <p>Thirty one patients with HCC who were treated with SBRT were used for the study. We studied 32 HCC lesions, where 23 lesions (22 patients) were treated targeting small non-resectable primary HCC, and 9 lesions (9 patients) targeting PVTT using the Cyberknife. All the 9 patients targeting PVTT received TACE for the advanced HCC. Tumor volume was 3.6–57.3 cc (median, 25.2 cc) and SBRT dose was 30–39 Gy (median, 36 Gy) in 3 fractions for consecutive days for 70–85% of the planned target volume.</p> <p>Results</p> <p>The median follow up was 10.5 months. The overall response rate was 71.9% [small HCC: 82.6% (19/23), advanced HCC with PVTT: 44.4% (4/9)], with the complete and partial response rates of 31.3% [small HCC: 26.1% (6/23), advanced HCC with PVTT: 11.1% (1/9)], and 50.0% [small HCC: 56.5% (13/23), advanced HCC with PVTT: 33.3% (3/9)], respectively. The median survival period of small HCC and advanced HCC with PVTT patients was 12 months and 8 months, respectively. No patient experienced Grade 4 toxicity.</p> <p>Conclusion</p> <p>SBRT for small HCC and SBRT combined with TACE for advanced HCC with PVTT showed feasible treatment modalities with minimal side effects in selected patients with primary HCC.</p

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease

    Get PDF
    International audiencePURPOSE: Increased type I interferon is considered relevant to the pathology of a number of monogenic and complex disorders spanning pediatric rheumatology, neurology, and dermatology. However, no test exists in routine clinical practice to identify enhanced interferon signaling, thus limiting the ability to diagnose and monitor treatment of these diseases. Here, we set out to investigate the use of an assay measuring the expression of a panel of interferon-stimulated genes (ISGs) in children affected by a range of inflammatory diseases. DESIGN, SETTING, AND PARTICIPANTS: A cohort study was conducted between 2011 and 2016 at the University of Manchester, UK, and the Institut Imagine, Paris, France. RNA PAXgene blood samples and clinical data were collected from controls and symptomatic patients with a genetically confirmed or clinically well-defined inflammatory phenotype. The expression of six ISGs was measured by quantitative polymerase chain reaction, and the median fold change was used to calculate an interferon score (IS) for each subject compared to a previously derived panel of 29 controls (where +2 SD of the control data, an IS of \textgreater2.466, is considered as abnormal). Results were correlated with genetic and clinical data. RESULTS: Nine hundred ninety-two samples were analyzed from 630 individuals comprising symptomatic patients across 24 inflammatory genotypes/phenotypes, unaffected heterozygous carriers, and controls. A consistent upregulation of ISG expression was seen in 13 monogenic conditions (455 samples, 265 patients; median IS 10.73, interquartile range (IQR) 5.90-18.41), juvenile systemic lupus erythematosus (78 samples, 55 patients; median IS 10.60, IQR 3.99-17.27), and juvenile dermatomyositis (101 samples, 59 patients; median IS 9.02, IQR 2.51-21.73) compared to controls (78 samples, 65 subjects; median IS 0.688, IQR 0.427-1.196), heterozygous mutation carriers (89 samples, 76 subjects; median IS 0.862, IQR 0.493-1.942), and individuals with non-molecularly defined autoinflammation (89 samples, 69 patients; median IS 1.07, IQR 0.491-3.74). CONCLUSIONS AND RELEVANCE: An assessment of six ISGs can be used to define a spectrum of inflammatory diseases related to enhanced type I interferon signaling. If future studies demonstrate that the IS is a reactive biomarker, this measure may prove useful both in the diagnosis and the assessment of treatment efficacy

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Precise measurement of the W-boson mass with the CDF II detector

    Get PDF
    We have measured the W-boson mass MW using data corresponding to 2.2/fb of integrated luminosity collected in proton-antiproton collisions at 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470126 W->enu candidates and 624708 W->munu candidates yield the measurement MW = 80387 +- 12 (stat) +- 15 (syst) = 80387 +- 19 MeV. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined
    corecore