12 research outputs found

    Calcium mobilization via intracellular ion channels, store organization and mitochondria in smooth muscle

    Get PDF
    In smooth muscle, Ca2+ release from the internal store into the cytoplasm occurs via inositol trisphosphate (IP3R) and ryanodine receptors (RyR). The internal Ca2+ stores containing IP3R and RyR may be arranged as multiple separate compartments with various IP3R and RyR arrangements, or there may be a single structure containing both receptors. The existence of multiple stores is proposed to explain several physiological responses which include the progression of Ca2+ waves, graded Ca2+ release from the store and various local responses and sensitivities. We suggest that, rather than multiple stores, a single luminally-continuous store exists in which Ca2+ is in free diffusional equilibrium throughout. Regulation of Ca2+ release via IP3R and RyR by the local Ca2+ concentration within the stores explains the apparent existence of multiple stores and physiological processes such as graded Ca2+ release and Ca2+ waves. Close positioning of IP3R on the store with mitochondria or with receptors on the plasma membrane creates ‘IP3 junctions’ to generate local responses on the luminally-continuous store

    Calcium and cancer: targeting Ca2+ transport

    No full text
    Ca2+ is a ubiquitous cellular signal. Altered expression of specific Ca2+ channels and pumps are characterizing features of some cancers. The ability of Ca2+ to regulate both cell death and proliferation, combined with the potential for pharmacological modulation, offers the opportunity for a set of new drug targets in cancer. However, the ubiquity of the Ca2+ signal is often mistakenly presumed to thwart the specific therapeutic targeting of proteins that transport Ca2+. This Review presents evidence to the contrary and addresses the question: which Ca2+ channels and pumps should be targeted

    Survival kit of Saccharomyces cerevisiae for anhydrobiosis

    No full text

    TRP channels coordinate ion signalling in astroglia.

    No full text
    Astroglial excitability is based on highly spatio-temporally coordinated fluctuations of intracellular ion concentrations, among which changes in Ca(2+) and Na(+) take the leading role. Intracellular signals mediated by Ca(2+) and Na(+) target numerous molecular cascades that control gene expression, energy production and numerous homeostatic functions of astrocytes. Initiation of Ca(2+) and Na(+) signals relies upon plasmalemmal and intracellular channels that allow fluxes of respective ions down their concentration gradients. Astrocytes express several types of TRP channels of which TRPA1 channels are linked to regulation of functional expression of GABA transporters, whereas TRPV4 channels are activated following osmotic challenges and are up-regulated in ischaemic conditions. Astrocytes also ubiquitously express several isoforms of TRPC channels of which heteromers assembled from TRPC1, 4 and/or 5 subunits that likely act as stretch-activated channels and are linked to store-operated Ca(2+) entry. The TRPC channels mediate large Na(+) fluxes that are associated with the endoplasmic reticulum Ca(2+) signalling machinery and hence coordinate Na(+) and Ca(2+) signalling in astroglia

    Systems biology of lupus: Mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment

    No full text

    The Myometrium: From Excitation to Contractions and Labour.

    No full text
    We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female's reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required
    corecore