61 research outputs found

    Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction

    Get PDF
    The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the nociceptin/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125 or 0.5 mg/infusion) both under a Fixed Ratio 1 and a Progressive Ratio schedule of reinforcement compared to wild type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showeda significantly lower drug intake compared to Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.Neuropsychopharmacology accepted article preview online, 26 August 2016. doi:10.1038/npp.2016.171

    Antidepressant- and anxiolytic-like effects of nociceptin/orphanin FQ receptor ligands

    No full text
    Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating affective disorders. It has been reported that the activation of NOP receptors produces anxiolytic-like effects in rodents in a large series of behavioral assays, i.e., elevated plus maze, light-dark aversion, operant conflict, fear-potentiated startle, pup ultrasonic vocalizations, and hole board tests. In contrast, the blockade of N/OFQ signaling obtained with NOP-selective antagonists promotes antidepressant-like effects in the forced swimming and tail suspension tests. In these assays, N/OFQ is inactive per se, but reverses the antidepressant-like effects of NOP antagonists. NOP receptor knockout mice show an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. Thus, the activation of the NOP receptor seems to evoke anxiolytic-like effects while its blockade antidepressant-like effects. This appears to be a rather unique behavioral profile since the activation or the blockade of a given neuropeptide receptor produces, in most of the cases, both antidepressant- and anxiolytic-like effects. This particular behavioral profile, the possible mechanisms of action, and the therapeutic potential of NOP receptor ligands for the treatment of depression and anxiety disorders are discussed in this review article

    Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs.

    No full text
    Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants

    Nociceptin/orphanin FQ receptor antagonists as innovative antidepressant drugs

    No full text
    Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) were identified in the mid 90s as a novel peptidergic system structurally related to opioids. A growing body of preclinical evidence suggests that blockade of NOP receptors evokes antidepressant-like actions. These have been explored using a range of compounds (peptide and non peptide antagonists), across different species (rat and mouse) and assays (behavioral despair and chronic mild stress) suggesting a robust and consistent antidepressant-like effect. Moreover, rats and mice knockout for the NOP receptor gene display an antidepressant-like phenotype in behavioral despair assays. Electrophysiological, immunohistochemical and neurochemical studies point to an important role played by monoaminergic systems, particularly 5-HTergic, in mediating the antidepressant-like properties of NOP antagonists. However other putative mechanisms of action, including modulation of the CRF system, circadian rhythm and a possible neuroendocrine-immune control might be involved. A close relationship between the N/OFQ-NOP receptor system and stress responses is well described in the literature. Stressful situations also alter endocrine, behavioral and neurochemical parameters in rats and chronic administration of a NOP antagonist restored these alterations. Interestingly, clinical findings showed that plasma N/OFQ levels were significantly altered in major and post-partum depression, and bipolar disease patients. Collectively, data in the literature support the notion that blockade of NOP receptor signaling could be a novel and interesting strategy for the development of innovative antidepressants

    NOP Ligands for the Treatment of Anxiety and Mood Disorders

    No full text
    Many studies point toward the nociceptin/orphanin FQ (N/OFQ) and the N/OFQ peptide receptor (NOP) as targets for the development of innovative drugs for treating anxiety- and mood-related disorders. Evidence supports the view that the activation of NOP receptors with agonists elicits anxiolytic-like effects, while its blockade with NOP antagonists promotes antidepressant-like actions in rodents. Genetic studies showed that NOP receptor knockout mice display an antidepressant-like phenotype, and NOP antagonists are inactive in these animals. In contrast, the genetic blockade of NOP receptor signaling generally displays an increase of anxiety states in the elevated plus-maze test. In this chapter we summarized the most relevant findings of NOP receptor ligands in the modulation of anxiety and mood disorders, and the putative mechanisms of action are discussed

    Central injections of nocistatin or its C-terminal hexapeptide exert anxiogenic-like effect on behaviour of mice in the plus-maze test

    No full text
    1 Nocistatin (NST) antagonizes several actions of nociceptin/orphanin FQ (N/OFQ), but acts on distinct receptors. As N/OFQ exerts anxiolytic-like actions in various tests, its behavioural actions in the elevated plus-maze (EPM) test were compared with those of bovine NST. 2 Five minutes after i.c.v. treatment, mice were placed on the EPM for 5 min and entries into and time spent on open and closed arms were recorded alongside other parameters. 3 NST (0.1 \ub1 3 pmol) reduced percentages of entries into (control 39.6+3.1%, peak e ect at 1 pmol NST 8.5+2.9%) and time spent on open arms (control 30.8+2.3%, NST 2.7+1.5%). The C-terminal hexapeptide of NST (NST-C6; 0.01 \ub1 10 pmol) closely mimicked these actions of NST, with peak e ects at 0.1 pmol. 4 N/OFQ (1 \ub1 100 pmol) increased percentages of entries into (control 38.5+3.4%; peak e ect at 10 pmol N/OFQ 67.9+4.9%) and time spent on open arms (control 32.0+3.8%; N/OFQ 74.9+5.8%). Closed arm entries, an index of locomotor activity, were unchanged by all peptides. 5 E ects of NST or NST-C6, but not N/OFQ, were still detectable 15 min after injection. Behaviour of animals co-injected with NST (1 pmol) or NST-C6 (0.1 pmol) plus N/OFQ (10 pmol) was indistinguishable from that of controls. 6 These results reveal potent anxiogenic-like actions of NST and NST-C6, and con\uaerm the anxiolytic-like properties of N/OFQ. As NST and N/OFQ both derive from preproN/OF, anxiety may be modulated in opposing directions depending on how this precursor is processed

    Altered anxiety-related behavior in nociceptin/orphanin FQ receptor gene knockout mice

    No full text
    Studies showed that nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP) agonists produce anxiolytic-like actions, while little is known about the effects of blockade of NOP receptor signaling in anxiety. To this aim, we investigated the behavioral phenotype of NOP receptor gene knockout mice (NOP(-/-)) in different assays. In the elevated plus-maze and light-dark box, NOP(-/-) mice displayed increased anxiety-related behavior. In the novelty-suppressed feeding behavior and elevated T-maze, NOP(-/-) mice showed anxiolytic-like phenotype, while no differences were found in the open-field, hole-board, marble-burying, and stress-induced hyperthermia. Altogether, these findings suggest that the N/OFQ-NOP receptor system modulates anxiety-related behavior in a complex manner

    GABA(A) signalling is involved in N/OFQ anxiolytic-like effects but not in nocistatin anxiogenic-like action as evaluated in the mouse elevated plus maze.

    No full text
    Nociceptin/orphanin FQ (N/OFQ) and nocistatin are two neuropeptides originated from the same precursor prepronociceptin/orphanin FQ (ppN/OFQ). N/OFQ is the endogenous ligand of the NOP receptor, while the target of action of nocistatin is still unknown. N/OFQ modulates various biological functions, including anxiety. Conversely, nocistatin either behaves as a functional N/OFQ antagonist or evokes per se effects opposite to those of N/OFQ. Here we investigated the interaction between the anxiolytic-like effects of N/OFQ and the anxiogenic-like action of nocistatin with those evoked by GABA(A) receptor ligands in the mouse elevated plus maze. The anxiogenic-like effects of the GABA(A) receptor antagonist pentylenetetrazol (20mg/kg; intraperitoneal, i.p.) were abolished by the co-treatment with N/OFQ (10pmol; intracerebroventricular, i.c.v.) while potentiated by the administration of nocistatin (0.01pmol; i.c.v.). The anxiolytic-like effects of the benzodiazepine receptor agonist diazepam (0.75mg/kg, i.p.) were reversed by nocistatin (0.1pmol; i.c.v.), whereas signs of sedation were observed when mice were co-treated with diazepam and N/OFQ (3pmol). Interesting enough, the i.p. treatment with flumazenil (1mg/kg) blocked the anxiolytic-like effects of N/OFQ (10pmol; i.c.v.), but not the anxiogenic effect elicited by nocistatin. Collectively, our findings suggest that the effects on anxiety elicited by pentylenetetrazol and diazepam can be counteracted or potentiated in the presence of N/OFQ and nocistatin. In addition, the effects on anxiety of N/OFQ, but not nocistatin, appear to be dependent on the benzodiazepine site of the GABA(A) receptor
    • …
    corecore