19 research outputs found

    Diagnosis and Treatment of Lichen Sclerosus

    Get PDF

    An integrated molecular diagnostic report for heart transplant biopsies using an ensemble of diagnostic algorithms

    Get PDF
    © 2019 International Society for Heart and Lung Transplantation BACKGROUND: We previously reported a microarray-based diagnostic system for heart transplant endomyocardial biopsies (EMBs), using either 3-archetype (3AA)or 4-archetype (4AA)unsupervised algorithms to estimate rejection. In the present study we examined the stability of machine-learning algorithms in new biopsies, compared 3AA vs 4AA algorithms, assessed supervised binary classifiers trained on histologic or molecular diagnoses, created a report combining many scores into an ensemble of estimates, and examined possible automated sign-outs. METHODS: We studied 889 EMBs from 454 transplant recipients at 8 centers: the initial cohort (N = 331)and a new cohort (N = 558). Published 3AA algorithms derived in Cohort 331 were tested in Cohort 558, the 3AA and 4AA models were compared, and supervised binary classifiers were created. RESULTS: A‘lgorithms derived in Cohort 331 performed similarly in new biopsies despite differences in case mix. In the combined cohort, the 4AA model, including a parenchymal injury score, retained correlations with histologic rejection and DSA similar to the 3AA model. Supervised molecular classifiers predicted molecular rejection (areas under the curve [AUCs]>0.87)better than histologic rejection (AUCs <0.78), even when trained on histology diagnoses. A report incorporating many AA and binary classifier scores interpreted by 1 expert showed highly significant agreement with histology (p < 0.001), but with many discrepancies, as expected from the known noise in histology. An automated random forest score closely predicted expert diagnoses, confirming potential for automated signouts. CONCLUSIONS: Molecular algorithms are stable in new populations and can be assembled into an ensemble that combines many supervised and unsupervised estimates of the molecular disease states

    Many heart transplant biopsies currently diagnosed as no rejection have mild molecular antibody-mediated rejection-related changes.

    Full text link
    BackgroundThe Molecular Microscope (MMDx) system classifies heart transplant endomyocardial biopsies as No-rejection (NR), Early-injury, T cell-mediated (TCMR), antibody-mediated (ABMR), mixed, and possible rejection (possible TCMR, possible ABMR). Rejection-like gene expression patterns in NR biopsies have not been described. We extended the MMDx methodology, using a larger data set, to define a new "Minor" category characterized by low-level inflammation in non-rejecting biopsies.MethodsUsing MMDx criteria from a previous study, molecular rejection was assessed in 1,320 biopsies (645 patients) using microarray expression of rejection-associated transcripts (RATs). Of these biopsies, 819 were NR. A new archetypal analysis model in the 1,320 data set split the NRs into NR-Normal (N = 462) and NR-Minor (N = 359).ResultsCompared to NR-Normal, NR-Minor were more often histologic TCMR1R, with a higher prevalence of donor-specific antibody (DSA). DSA positivity increased in a gradient: NR-Normal 24%; NR-Minor 34%; possible ABMR 42%; ABMR 66%. The top 20 transcripts distinguishing NR-Minor from NR-Normal were all ABMR-related and/or IFNG-inducible, and also exhibited a gradient of increasing expression from NR-Normal through ABMR. In random forest analysis, TCMR and Early-injury were associated with reduced LVEF and increased graft loss, but NR-Minor and ABMR scores were not. Surprisingly, hearts with MMDx ABMR showed comparatively little graft loss.ConclusionsMany heart transplants currently diagnosed as NR by histologic or molecular assessment have minor increases in ABMR-related and IFNG-inducible transcripts, associated with DSA positivity and mild histologic inflammation. These results suggest that low-level ABMR-related molecular stress may be operating in many more hearts than previously estimated. (ClinicalTrials.gov #NCT02670408)
    corecore