18 research outputs found
Selected Topics in High Energy Semi-Exclusive Electro-Nuclear Reactions
We review the present status of the theory of high energy reactions with
semi-exclusive nucleon electro-production from nuclear targets. We demonstrate
how the increase of transferred energies in these reactions opens a complete
new window in studying the microscopic nuclear structure at small distances.
The simplifications in theoretical descriptions associated with the increase of
the energies are discussed. The theoretical framework for calculation of high
energy nuclear reactions based on the effective Feynman diagram rules is
described in details. The result of this approach is the generalized eikonal
approximation (GEA), which is reduced to Glauber approximation when nucleon
recoil is neglected. The method of GEA is demonstrated in the calculation of
high energy electro-disintegration of the deuteron and A=3 targets.
Subsequently we generalize the obtained formulae for A>3 nuclei. The relation
of GEA to the Glauber theory is analyzed. Then based on the GEA framework we
discuss some of the phenomena which can be studied in exclusive reactions,
these are: nuclear transparency and short-range correlations in nuclei. We
illustrate how light-cone dynamics of high-energy scattering emerge naturally
in high energy electro-nuclear reactions.Comment: LaTex file with 51 pages and 23 eps figure
An enigmatic hypoplastic defect of the maxillary lateral incisor in recent and fossil orangutans from Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus)
Developmental dental pathologies provide insight into health of primates during ontogeny, and are particularly useful for elucidating the environment in which extant and extinct primates matured. Our aim is to evaluate whether the prevalence of an unusual dental defect on the mesiolabial enamel of the upper lateral incisor, thought to reflect dental crowding during maturation, is lesser in female orangutans, with their smaller teeth, than in males; and in Sumatran orangutans, from more optimal developmental habitats, than in those from Borneo. Our sample includes 49 Pongo pygmaeus (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth), and Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography, and dental metrics of anterior teeth. We observed fenestration between incisor crypts and marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with or without the defect, implicating undergrowth of the jaw as the proximate cause of dental crowding and defect presence. Male orangutans from both islands show more defects than do females. The defect is significantly more common in Bornean orangutans (71 %) compared to Sumatran (29 %). Prevalence among fossil forms falls between these extremes, except that all five individual Anapithecus show one or both incisors with the defect. We conclude that maxillary lateral incisor defect is a common developmental pathology of apes that is minimized in optimal habitats and that such evidence can be used to infer habitat quality in extant and fossil apes
